

ENVIRONMENTAL SITE INVESTIGATION

SADRI PROPERTY AND EAST PARCELS TAX LOTS 190, 200 AND LOT 4, MAP 1S1025 TILLAMOOK, OREGON DEQ ECSI #5899

Prepared for

TILLAMOOK COUNTY, OREGON

P.O. Box 649 Wilsonville, Oregon 97070 (503) 682-2500

> Project #1420.01 October 30, 2014

ENVIRONMENTAL SITE INVESTIGATION

Sadri Property and East Parcels Tax Lots 190, 200, and Lot 4, Map 1S1025 Tillamook, Oregon DEQ ECSI #5899

Prepared for

Tillamook County, Oregon

This report is for the exclusive use of the clients, and is not to be relied upon by other parties. It is not to be photographed, photocopied, or similarly reproduced in total or in part without the expressed written consent of the client and Anderson Geological.

> Anderson Geological, Inc. P.O. Box 649 Wilsonville, Oregon 97070 (503) 682-2500

TABLE OF CONTENTS

1.0 INTR	RODUCTION1
1.1 S	Site Location and Setting
1.2 0	Geology and Hydrogeology
2.0 BAC	KGROUND
2.1 8	Sadri Property
2.2 E	Last Parceis
3.0 FUT	URE PLANNED ACTIVITIES ON THE SUBJECT PROPERTY5
4.0 PURI	POSE AND SCOPE
5.0 FIEL	D METHODS
4.1 8	Soil Sampling (Test Pits TP-1 through TP-20)
4.2 8	Sediment Sampling
6.0 INVE	ESTIGATION RESULTS 8
6.1 (General Subsurface Conditions
6.2 (Observations and Lab Analytical Results
6.	2.1 Former West Mill
6.	2.2 Former East Mill
6.	2.3 Former Sawdust Burner
6.	2.4 East Parcels
6.	2.5 Inlet Pond
7.0.CON	CEDTUAL SITE MODEL 11
7.0 CON	Ver TUAL SITE MODEL
7.1 T	Surrent and Extend of Containination
7.2 0	Contaminant Sources
7.3 C	Juman Receptors
7.5 E	Ecological Receptors
7.6 E	Exposure Pathways
8.0 RISK	X-BASED ANALYSIS 16
8.1 T	Take Soils
8	3.1.1 Construction and Excavation Workers - SFC Project
8	3.1.2 Re-Use of Take Soils as Fill Material
8 1 C Q	3.1.3 Occupational Exposure on Sadri Property
8.2 I	Leave Sons
9.0 ECO	LOGICAL RISK ASSESSMENT
9.1 Т	Cerrestrial Receptors
9.2 A	Aquatic Receptors
9.3 7	Take Soils
9.4 I	Leave Soils
9.5 S	Sediment Screening
Anderson	Geological Inc

i

10.0 DISPOSAL AND RE-USE OF EXCAVATED MATERIAL	21
10.1 Regulatory Framework for Re-Use and Disposal of Fill	
10.2 Classification and Options for Re-Use of Excavated Materials	
10.2.1 Classification Based on Contaminant Concentrations	
10.2.2 Buried Concrete Waste and Above-Ground Concrete Structures	
10.2.3 Buried Woody Debris	
10.3 Estimated Volumes of Fill Types	
10.4 Estimated Cost for Removal of Soil Exceeding RBCs (Sadri Property)	
11.0 SUMMARY AND CONCLUSIONS	25
12.0 LIMITATIONS	26

FIGURES

Figure 1	Site Location Map
Figure 2	Site and Vicinity Plan
Figure 3	Topographic Contour Plan - Former Mill Areas and East Parcels
Figure 4	Soil Contaminants in Excess of Risk-Based Concentrations (RBCs)
Figure 5	Soil Contaminants in Excess of Ecological SLVs (Take Soils)
Figure 6	General Locations of Soil Disposal Types (Take Soils)
Figure 7	Leave Soils in Excess of RBCs and Ecological Screening Level

TABLES

Table 1	Soil Analysis Summary - Tak	e Soils (TPH, PAHs)
I abic I	Son Analysis Summary - Tak	C 50115 (11 11, 1 A115)

- **Table 2**Soil Analysis Summary Take Soils (Metals)
- **Table 3**Soil Analysis Summary Take Soils (Dioxins/Furans)
- **Table 4**Soil Analysis Summary Leave Soils (TPH, PAHs)
- **Table 5**Soil Analysis Summary Leave Soils (Metals)

APPENDICES

- Appendix A Proposed Sample Analysis Tables (from project work plan)
- Appendix B Exploratory Test Pit Logs
- Appendix C Laboratory Reports and Sample Chain of Custody
- Appendix D Cost Estimate for the Remediation of the Sadri Property

1.0 INTRODUCTION

Anderson Geological, Inc. (AGI) was authorized by Tillamook County to complete this Phase II Environmental Site Assessment of Tax lots 190, 200 and Lot 4 Map 1S1025, Tillamook, Oregon (Subject Property). Tillamook County is in the process of acquiring tax lot 200 as part of the Southern Flow Corridor (SFC) project. The purpose of the SFC project is to provide flood level reduction benefits by removing man-made impediments to flood flow and to permanently restore and protect tidal wetland habitats at the confluence of the Wilson and Trask Rivers.

The SFC project accomplishes this by extensive removal of existing levees and fill around the rivers and sloughs north and west of the town of Tillamook.

The focus of this investigation consists of a portion of a larger piece of private, undeveloped land, referred to as the Sadri property (tax lot 200), and three narrow parcels to the east of the Sadri property, referred to in this report as the East Parcels, that are currently owned by the City of Tillamook, including a narrow strip of land that consists of the northern extension of Douglas Avenue. The parcel on the east side of the Douglas Avenue extension is known as the Schmidt Property and was the subject of an environmental investigation in 2009-2011 prior to the acquisition of the property by the City of Tillamook. All three properties that make up the East Parcels consist of unimproved land. The East Parcels together with a portion of the southeast corner of the Sadri Property, comprise the area referred to in this report as the Subject Property (Figure 3).

Previous sampling on the Subject Property identified areas with elevated concentrations of petroleum hydrocarbons (heavy oil), polynuclear aromatic hydrocarbons (PAHs) and metals (primarily cadmium and lead) in the soil. This Site Investigation is intended to further identify the nature and extent of the contaminated soils, to identify areas where contaminated soil may pose a risk to present and future human and ecological receptors, and to characterize the materials that are to be removed from the Subject Property during the SFC project for options regarding disposal and re-use.

1.1 Site Location and Setting

The Subject Property consists of the southeast portion of tax lot 200 (Sadri Property) and the East Parcels, consisting of the northern extension of Douglas Avenue (north of Front Street), Tax Lot 190 (formerly known as the Schmidt Property) and a portion of Lot 4 located on the east side of the Schmidt Property. Tax lot 200 is owned by Mr. Asghar Sadri; the remaining three parcels, referred to as the East parcels, are owned by the City of Tillamook. The total area covered by the Subject Property is approximately seven acres, which is mostly covered with a forested wetland located along Hoquarten Slough (Fig. 3).

Two separate mills previously operated on the property and are referred to in this report as "East Mill" which operated prior to 1944, and "West Mill" which operated from 1944 through approximately 1965. The approximate locations of the mills are shown on Figures 3 through 7.

The Subject Property is currently vacant and consists of woodland and marshes. Levees and dikes around the perimeter of the property protect the site from minor flooding events. A narrow inlet off of Hoquarten Slough, referred to as the Inlet Pond, was used as a log pond when the East Mill was in operation prior to 1944.

Much of the site is overgrown with small trees and dense undergrowth. A foot trail was recently cut through the vegetation along the tops of the levees and dikes, providing access to western margin of the site. A lack of recent rains resulted in low water levels in the ponds, exposing the sediment and marsh grasses in all areas except in narrow channels.

1.2 Geology and Hydrogeology

The regional geology consists of flood plain and terrace alluvium overlying Tertiary volcanic deposits. The area is underlain by floodplain and marine bay mud deposits with layers of sand and gravelly sand and organic matter to depths of more than 150 feet, These deposits are underlain by marine sedimentary deposits. Many areas around the former mills are underlain by fill material consisting of wood waste (chips and sawdust).

During the current investigation, saturated soils were first encountered at depths of 1-3 feet below ground surface (bgs). Given the lack of significant topographic features in the area, the groundwater surface is expected to be relatively flat, with a probable net flow toward Hoquarten Slough.

Surface water in the area consists of marsh and wetlands throughout the subject property that display standing water at various times of the year in response to precipitation events. The upland portions of the subject property are isolated from these intermittent surface water bodies and Hoquarten Slough by low, earthen levees.

2.0 BACKGROUND

2.1 Sadri Property

The history of the Sadri Property is presented in the findings of a Phase I Environmental Assessment report completed by Anderson Geological in November 2013. The following is a summary of the history of the property and the findings and conclusions of the report.

Phase I Environmental Site Assessment Sadri Property Tax Lot 200, Map 1S1025 November 22, 2013

The Subject Property was undeveloped until the 1920's when the Tillamook Spruce Veneer Company opened a veneer mill on the east end of the property, near Douglas Street and Front Avenue. The mill was built in the low-lying area on pilings. Logs were transported to the mill from Hoquarten Slough and into a narrow inlet on the north side of the mill. The mill included saws, dry kilns, a woodworking house, a boiler house, machine shop and oil house. It is believed that the mill was powered by steam generated from wood waste from the mill.

In 1944, the mill was abandoned and a new mill, operated by Aberdeen Plywood Company, was constructed west of the original mill. A log pond was created in the low-lying area west of the mill and the Hoquarten Slough inlet was no longer used for log delivery to the mill. The new mill was also built on pilings and had a lathe room, a filing room (saw and knife sharpening), a clipper room (for trimming veneer) and a power room. A second log pond was created west of the existing pond in the mid- to late-1950's.

The mill was originally powered by electricity and steam. The mill may have abandoned steam power in the late 1950's when a separate burner was constructed near the old mill for burning wood wastes. The green veneer was shipped from the new mill to the company's plywood plant in Tacoma, Washington for further processing. There is no evidence that plywood manufacturing was ever performed on the subject property.

The mill closed in the mid-1960's and the log ponds were drained. Fill material, possibly from the areas around the former mill buildings, was placed on the southeast corner of the west log pond around the same time as the closure of the mill. The filled area is currently overgrown with trees and dense vegetation.

The following two *recognized environmental conditions* were identified in connection with the Subject Property:

- The Subject Property was the site of two different veneer mills between the 1920's and 1965. The mills appear to have been powered by electricity and steam power fueled by wood waste from the mills. A concern exists that lubricants, solvents, and hydraulic fluid may have been released to the subsurface, including sediments in the adjacent log ponds. *Recommendation*: Complete a shallow soil and sediment investigation in the vicinity of the former mill buildings and log ponds to identify potential contaminants in those media.
- Historic aerial photographs show that fill material from an unknown source was placed on the southeast corner of the west log pond in the 1960's. A concern exists that environmental contaminants could have been present in the fill material when it was placed on the subject property. *Recommendation:* Collect samples of the fill material to identify potential contaminants in the material.

Phase II Environmental Site Assessment Sadri Property Tax Lot 200, Map 1S1025 February 14, 2014

In January and May 2014, AGI collected samples of soil, sediment and groundwater from locations around the subject property for the purpose of identifying areas which may have been impacted by releases of hazardous substances from the former mill activities.

The initial sampling identified contamination by heavy oil, polynuclear aromatic hydrocarbons and metals in the shallow soil, and contamination by heavy oil and metals was discovered in the groundwater in the log peeling and mechanical areas on the two mill sites. Elevated lead was detected in a sediment sample from one of the log ponds. The source of the contamination is assumed to be from releases of lubricating oils and waste products from former operations at the mills.

Evidence of a garbage dump was observed in a test pit completed on the former Schmidt Property. The refuse consisted of ash and scraps of plastic and metal, fabric and shoes. A soil sample collected from this layer contained heavy oil and elevated concentrations of cadmium and lead. Most or all of the East Parcels believed to underlain by fill material, including large pieces of concrete. The lateral extent of the refuse dump was not determined.

The soil around a former sawdust burner, identified on a Sanborn Fire Insurance map, was not investigated.

2.2 East Parcels

Site Investigation Report Schmidt Property Tax Lot 100, Map 1S1025 June 29, 2011

Soil and groundwater sampling was completed by Hart Crowser on the East Parcels. The purpose of the sampling was to assess the potential nature, extent and magnitude of contamination resulting from illegal dumping activities on the property. The site is built up with fill consisting largely of pieces of broken concrete and rough-poured concrete from truck batch excesses. Other historic dumping reportedly consisted of scrap lumber, automobile parts, and scrap plastic.

Seven exploratory borings were completed on the East Parcels using sonic drilling methods. Soil and groundwater was found to be impacted with diesel- and oil-range hydrocarbons and metals, including arsenic, copper, lead and zinc. Low levels of volatile organic compounds (VOCs) and polynuclear aromatic hydrocarbons (PAHs) were also detected in the soil at depths of 5-8 feet below ground surface (bgs). Shallower samples were not collected.

Comparison of the concentrations to Oregon DEQ risk-based concentrations (RBCs) indicated no unacceptable risk to future construction or excavation workers. It was concluded that aquatic ecological receptors may be at risk from arsenic, chromium, copper, lead mercury and zinc.

3.0 FUTURE PLANNED ACTIVITIES ON THE SUBJECT PROPERTY

The future activities on the Subject Property will include the reduction of the elevation of the ground surface north of the "dig line" (Figure 2) to a finished elevation of approximately 8 feet above mean sea level (msl). Based on the current ground elevations, this will involve the removal of approximately 3-4 feet of earthen and woody fill from the Sadri Property and 5-8 feet of earthen, woody and construction fill from the East Parcels.

The removal of the potentially contaminated soils and the resulting exposure of a new ground surface to aquatic ecological receptors presents the following concerns that are addressed in this report:

• Potential exposure of excavation workers to unacceptable levels of contaminants through dermal exposure and inhalation of contaminants during the soil removal. Potential worker exposure to contaminants will be evaluated by comparing contaminant concentrations in the shallow soils with DEQ risk-based concentrations (RBCs) for construction and excavation workers.

- Potential ecological and human health risk posed by contaminants in the existing soils on the Subject Property under the scenario that no excavation is done for the SFC project and the property is eventually used for its current zoned purpose.
- Some of the soil that is to be removed as part of the SFC project is contaminated with varying degrees of environmental contaminants and will require landfilling or special conditions for re-use on site. The soils that are removed as part of the elevation reduction activities and any over-excavation are hereafter referred to as *take* soils. The exposed, residual soils left on the finished ground surface (generally at an elevation of approximately 8 feet above mean sea level) are hereafter referred to as the *leave* soils. The *leave* surface is expected to be wet or under water for significant portions of the year.
- The concentrations of contaminants in the resulting *leave* surface must not exceed screening levels for ecological receptors. Some areas may require some over-excavation to meet this requirement.

The removal of the *take* soils is expected to result in a finished *leave* surface in many areas consisting of sawdust, wood chips and larger woody material such as logs and smaller branches. The reduction in the elevation of the East Parcels may result in a *leave* surface in some areas consisting of anthropogenic fill material and construction fill.

4.0 PURPOSE AND SCOPE

The purpose of the current investigation was to collect additional data to 1) Evaluate the risk to human receptors under current conditions and during the soil removal associated with the SFC project; 2) Evaluate risk to terrestrial and aquatic ecological receptors under current conditions and after the soil removal from the SFC project; and 3) Identify the lateral and vertical extent of soils impacted by contaminants to determine proper handling and disposal or re-use of the impacted soils.

The scope of work included the following tasks:

- In each sampling location, calculated the depth to the proposed *leave* surface (approximately 8 feet above msl). This information will be used during the field sampling to guide in the collection of soil samples.
- Completed twenty test pits in selected areas for the purpose of collecting soil samples from both the *take* zone and the "leave" surface and documented the thickness of the soil veneer overlying the sawdust and wood chips.
- Collected two sediment samples from the Inlet Pond to identify the lateral extent of the sediments with elevated lead concentrations.
- Analyzed the *take* soils for contaminants of concern based on evaluating worker exposure, soil

disposal and current ecological risk. Analyzed the *leave* soils for contaminants of concern based on evaluating future ecological risk.

• Prepared a report that discusses the analytical results and evaluates the potential risks to human and ecological receptors, makes recommendations for possible over-excavation of additional soil and fill material, and offers recommendations with the respect to appropriate handling and disposal of the *take* soils. Included estimated costs for any necessary site remediation based on current site conditions, to assist in the appraisal of the property prior to the sale of the property to Tillamook County.

5.0 FIELD METHODS

The test pits were excavated by Aufdermauer Trucking and Excavation LLC using a trackmounted excavator. The explorations were completed in the areas referred to as the East Mill, the West Mill, the Sawdust Burner, and the East Parcels. The locations of the test pits are shown on Figures 3 through 7. All sample locations were field-marked with wooden lathe stakes labeled with the test pit number.

Preliminary sampling was completed in test pits TP-27 through TP-30 on May 29, 2014 during the excavation of exploratory test pits by Shannon & Wilson, Inc. Soil samples were collected generally from shallower depths, without distinguishing between *take* and *leave* samples. The results from the sampling helped guide the later sampling from test pits TP-1 through TP-20. The sampling was completed in general accordance with the Site Investigation Work Plan completed by AGI (August 13, 2014).

The sediment samples in the Inlet Pond were collected from hand-augered borings using a mud auger head equipped with a butterfly valve.

5.1 Soil Sampling (Test Pits TP-1 through TP-20)

All soil samples were collected directly from the walls of the test pit except where the sampling depth would present a safety issue to persons entering the pit. For deeper locations, the samples were collected from the undisturbed soils in the bucket of the excavator. The soil samples collected from the *take* soils consisted of a composite of the depths of the soils between the ground surface and the *leave* surface.

The soil samples collected from the *leave* surface were collected from the upper 6 inches of the presumed "leave" surface. If the *leave* surface in any individual test pit, defined as the soils located at 8 feet above mean sea level, was composed mostly of sawdust or other woody material, then no *leave* sample was collected from that pit.

Given the high concentrations of woody organic matter on the site, the analysis for diesel and heavy oil (Northwest Method NWTPH-Dx) include silica gel cleanup to remove effects from biogenic organic material.

Some of the soil samples were archived for possible later laboratory analysis. Archived samples were analyzed if one or more screening samples from the same sample group showed an exceedance of the most conservative risk-based value (human or ecological). The archived sample was analyzed only for those analyte groups that exceeded the risk-based criteria.

The soil samples were analyzed for one or more of the following: Total Petroleum Hydrocarbons - Diesel extended (Northwest Method NWTPH-Dx), polynuclear aromatic hydrocarbons (EPA Method 8270-SIM, low-level detection), total metals (EPA Method 6020) and dioxins/furans (EPA Method 8290A). The details of the sampling rationale and the proposed chemical analyses for each sampling area are shown on Tables 1-4 located in Appendix A of this report.

5.2 Sediment Sampling

Two sediment samples were collected from the Inlet log pond (samples IP-3 and IP-4). The sampling was completed by AGI using a hand-operated AMS hand auger with a 3¹/₂-inch mud auger bit equipped with a butterfly valve. The locations of the sediment samples are shown on Figure 5.

The samples were collected from a depth of 6-12 inches within the sediment column. Attempts were made to minimize the amount of plant matter and woody material in the samples.

Both of the sediment samples were analyzed for total lead.

6.0 INVESTIGATION RESULTS

6.1 General Subsurface Conditions

Throughout the site, the test pits encountered topsoil and silty mud mixed with varying amounts of sawdust, wood chips and larger woody material (tree trunks and branches). Groundwater was encountered at depths ranging from 2 feet bgs around the west mill to more than 8 feet bgs on the east parcels. None of the recovered soils or groundwater displayed any field evidence of environmental contamination (i.e. sheen, odor) except in test pits TP-5 and TP-6, both of which contained soil and groundwater that displayed significant evidence of contamination by heavy oil (see section 5.3).

The soil and sediment analytical results are summarized in Tables 1 through 5. The laboratory reports are included in Appendix C. Copies of the test pit logs describing the soil types field observations are included in Appendix B.

6.2 Observations and Lab Analytical Results

6.2.1 Former West Mill

The *leave* surface around the West Mill area ranges from approximately 3-5 feet bgs. The soil and woody fill material on the north and east sides of the concrete structure (test pits TP-5 and TP-6) displayed a dark, oily appearance below the water table (2 feet below ground surface - bgs). Numerous (15-20) used oil filters approximately 15 inches long and 4 inches in diameter were recovered from test pit TP-6 between depths of 2-6 feet bgs.

The soil in the remaining test pits (TP-1 through TP-4 and TP-27) consisted of loose, finegrained fill consisting of clay, silt, and sand. This fill was relatively thin (1-2 feet) and underlain by wood chips and sawdust mixed with minor soil to depths of 6-7 feet bgs.

Based on the current and previous sampling, the *take* soils around the concrete structure and the area immediately south of the structure (TP-27) contained heavy oil between 59.1 and 15,500 milligrams per kilogram (mg/kg), elevated PAHs and elevated cadmium and lead. The *leave* soils around the West Mill contained relatively low concentrations of heavy oil, PAHs and metals except at TP-5 and TP-6, which contained 4,180 to 13,000 mg/kg heavy oil, elevated PAHs and 75.8 mg/kg total lead in TP-6 at a depth of 5 feet bgs.

6.2.2 Former East Mill

The *leave* surface around the East Mill area ranges from approximately 2-3 feet bgs. The *take* soils consist of medium to dark gray silty fill with variable amounts of sawdust and other woody matter. The *take* soils in TP-15 and TP-16 contained minor amounts of anthropogenic material including brick fragments and metal building hardware (angle iron, nails, etc.). Native clayey silt was encountered at depths of 2¹/₂ to 3 feet bgs.

Based on the current and previous sampling, the *take* soils around the concrete structure contained heavy oil between 203 and 317 milligrams per kilogram (mg/kg), elevated PAHs and elevated cadmium (up to 1.01 mg/kg) and lead (up to 124 mg/kg).

The *leave* soils around the East Mill contained relatively low concentrations of heavy oil, elevated concentrations of indeno(1,2,3-cd) pyrene (up to 0.0254 mg/kg) in TP-14, TP-15 and TP-16), and elevated cadmium (up to 0.770 mg/kg) in TP-16 and TP-17.

6.2.3 Former Sawdust Burner

The *leave* surface around the East Mill area ranges from approximately 2½ to 4½ feet bgs. The *take* soils consist of a variety of materials, including sawdust with a silty matrix to sand and gravel with 0% to 20% sawdust and tree roots. No ashes or charred wood from the former sawdust burner

were encountered in the pits. Native clayey silt was encountered at two of the pits at depths of 5 to 6 feet bgs.

Based on the current and previous sampling, the *take* soils around the sawdust burner contained heavy oil up to 106 mg/kg, elevated concentrations of benzo (b+k)fluoranthene (0.0273 mg/kg) and naphthalene (0.121 mg/kg) in TP-7 and no metals in excess of background concentrations. Low concentrations of dioxins/furans were detected in the soil samples collected from the source area (TP-11 and TP-12). Given the low concentrations of dioxins/furans in the samples, none of the other soil samples in the sawdust burner area were analyzed for dioxins/furans.

The *leave* soils around the former sawdust burner contained no elevated concentrations of heavy oil, PAHs or metals.

6.2.4 East Parcels

The *leave* surface on the East Parcels ranges from approximately 6 feet bgs on the north end to 10 feet bgs on the south end. The *take* soils on the north end (TP-18) consist of uniform silty fine sand overlying native clay silt. Further south (TP-30), the *take* soils include more anthropogenic materials including a dumpsite with household waste (plastic, metal scraps, fabric). The lateral extent of the dumpsite was not identified. Further south (TP-19, TP-20) the *take* soils included construction waste (bricks, lumber, pieces of concrete). Native clayey silt was encountered in two of the pits at depths of 5 to 6 feet bgs.

Based on the current and previous sampling, the *take* soils on the east parcels contained low concentrations of heavy oil except in TP-30, where the concentration was 2,190 mg/kg, elevated concentrations of cadmium in TP-19 (0.0273 mg/kg), lead (78.1 and 159 mg/kg) in TP-19 and TP-20 and mercury (0.227 mg/kg) in TP-20. No PAHs were detected in any of the samples.

The *leave* soils on the east parcels contained no detected PAHs. Cadmium was detected above background concentrations in the *leave* soils from TP-19. No *leave* samples were collected from TP-20 due to equipment refusal in hard concrete at 8 feet bgs.

6.2.5 Inlet Log Pond

The two sediment samples collected from the inlet log pond contained 13.6 and 29.5 mg/kg total lead.

7.0 CONCEPTUAL SITE MODEL

The conceptual site model evaluates current and future uses with respect to potential exposure to the contaminants of concern. A summary of the conceptual site model is presented in Figure A. The conceptual site model evaluates the potential exposure to the contaminants of concern based on future land use as a natural marsh and wetland with no residents, permanent buildings or other public access.

7.1 Nature and Extent of Contamination

The compounds detected on the site consist of heavy-fraction petroleum hydrocarbons, polynuclear aromatic hydrocarbons and metals. The metals are naturally-occurring and are typically present within predictable ranges (i.e. background concentrations). In the absence of site-specific data for background levels of metals in soil and sediment, Oregon DEQ commonly refers to default background levels for soils and sediment which are based on various sources of historical published data for Oregon and Washington. This data is commonly used as an initial screening tool for determining whether metals concentrations at a given site exceed regional background concentrations.

The contaminants on the Sadri property are generally limited to the immediate areas around the two concrete structures associated with the two former mill buildings and the former sawdust burner. Contaminants on the East Parcels are generally located in areas that had a history of placement of construction fill and fill from undocumented sources, which consists of most of the East Parcels. Elevated concentrations of the contaminants extend below the *take* soils and into the *leave* soils in all of the source areas except the sawdust burner.

A minimum of 15,200 square feet of the soils on the *leave* surface (approximately 5% of the Subject Property) exceed ecological screening level values (SLVs). An additional 24,000 square feet of soils on the East Parcels (approximately 8% of the Subject Property) may exceed SLVs, based on the contaminants detected in the overlying *take* soils. The *leave* soils in this area were not sampled. These figures were estimated by measuring the approximate areas of the leave soils within the dig area as shown on Figure 7.

7.2 Current and Future Land Use

The Subject Property is currently vacant land consisting of woodland and marshes which is bordered to the north and east by Hoquarten Slough, to the west by a former log pond and vacant spruce woodland, and to the south by commercial and residential properties across Front Street.

The future restoration plans for the subject property include the removal of the levees along

Hoquarten Slough and interior areas of the property to allow unrestricted flow of flood waters, and the removal of soil on the Subject Property above an elevation of 8 feet above mean sea level, except for a wedge of land on the south side of the property, referred to as the "no-dig" area. The "no-dig" area is being considered for placement of contaminated fill material removed from the subject property. The area elevated by the fill may be used as a parking lot with a hiking trail and/or a public day-use area (Figure 3).

The north portions of the Subject Property are located within unincorporated Tillamook County and are zoned Open Space which includes open spaces, parks and urban farming. The south portions of the Sadri Property and the East Parcels are located within the City of Tillamook and are zoned Light Industrial.

The proposed future use of the property does not include any industrial uses, however the riskbased assessment of the Sadri Property will include an assessment for occupational exposure on the portions of the property that are zoned for industrial use for the purpose of determining whether any remediation would be warranted based on its current zoning. The cost of any such remediation may be used to adjust the market value of the Sadri Property prior to its purchase by Tillamook County.

7.3 Contaminant Sources

The contaminants on the subject property consist of heavy oil, metals and polynuclear aromatic hydrocarbons in the shallow soils around the two former mill sites. The contaminants are believed to have originated from releases of wastes associated with the mill operations including equipment lubrication, general machining, and sharpening of cutting and log peeling equipment. Heavy oil detected in the soils near the West Mill appears to have been the result of poor waste disposal practices, including the burial of used oil filters that were presumably associated with the mill's power-generating equipment.

The contaminants on the East Parcels appears to be related to contaminants that were present in the fill material that was placed in the area over the last 40 years.

7.4 Human Receptors

The subject property currently consists of undeveloped woodland and wetland with no dwellings or other habitable structures.

No recreational uses such as hiking trails are planned for areas of the Subject Property north of the dig line. A hiking trail (extension of the Hoquarten Trail) may be constructed on the south end of the Subject Property, across the proposed no-dig area where excavated material will be placed and capped. Construction of the cap will take into account potential exposure to persons using the trail.

A kayak launch is also planned for somewhere on the East Parcels. The launch, consisting of a ramp or dock, would provide boat access to Hoquarten Slough at the boundary of the no-dig area. As with the hiking trail, construction of the kayak launch area will take into account potential exposure to persons using the boat launch.

Under the current plans, potential human receptors consist of construction workers and excavation workers associated with the removal of the levees and fill material associated with the SFC project and the later restoration of the site.

The development of the industrial-zoned portion of the Sadri Property would potentially expose construction workers and excavation workers involved in site preparation and building construction as well as persons working in the industrial businesses (occupational receptors).

7.5 Ecological Receptors

Terrestrial and aquatic ecological receptors may be exposed to contaminants on the subject property. Terrestrial receptors are expected to include plants, invertebrates (worms), birds and mammals. Game trails and tracks observed on the site indicate that deer use the property as a travel corridor and for possible bedding areas.

Aquatic receptors in the log ponds may include some fish species, although the low areas of the site (log ponds) are only periodically inundated with water during periods of heavy or prolonged precipitation, and no permanent resident fish species are expected in the area. Aquatic-dependent birds and mammals are likely present and are also considered potential aquatic ecological receptors. Given the potential for soil erosion into sensitive wetland environments, contaminant concentrations in soil are also screened against sediment screening levels.

7.6 Exposure Pathways

Risk assessments completed at the former Tillamook City Shops located adjacent to the south of the Subject Property and at the former Erskine bulk fuel facility adjacent to the southeast corner of the subject property concluded that groundwater is not used for drinking water, and the drinking water exposure pathway was considered incomplete. Given the proximity of these properties to the Subject Property, neither the direct pathway (*Ingestion/inhalation from Tap Water*) nor the indirect soil pathway (*Leaching to Groundwater*) for groundwater ingestion are considered to be complete.

All other exposure pathways are considered to be complete. Based on these assumptions, the following exposure pathways are considered complete and are discussed:

<u>Soil</u>

• Excavation Worker

Persons performing underground work and excavating soil on the Subject Property can be exposed to site-related contaminants at levels represented in the "construction worker" scenario in DEQ's Risk-Based Decision Making Guidance.

• Construction Worker

Although construction of buildings is unlikely on the Subject Property, the construction of the flood-enhancement area may still expose workers to site-related contaminants at levels represented in the "construction worker" scenario in DEQ's Risk-Based Decision Making Guidance.

• Volatilization to Outdoor Air

Persons performing underground work and excavating soil on the Subject Property, and persons occupying areas of the Subject Property developed for industrial use can be exposed to site-related contaminants at levels represented in the "construction worker" scenario in DEQ's Risk-Based Decision Making Guidance.

• Vapor Intrusion into Buildings (for property appraisal purposes only)

Persons occupying areas of the Subject Property developed for industrial use can be exposed to site-related contaminants at levels represented in the "occupational" scenario in DEQ's Risk-Based Decision Making Guidance. This would apply only to the portion of the Sadri Property that is located within the Tillamook city limits and zoned for light industrial use.

• Ingestion/Dermal Contact/Inhalation - Occupational Receptors (for property appraisal purposes only)

Persons occupying areas of the Subject Property developed for industrial use can be exposed to site-related contaminants at levels represented in the "occupational" scenario in DEQ's Risk-Based Decision Making Guidance. This would apply only to the portion of the Sadri Property that is located within the Tillamook city limits and zoned for light industrial use.

Groundwater

• Groundwater in excavation

Persons performing underground work on the Subject Property can come in contact with contaminants in groundwater, which is generally less than than 3 feet below ground surface. However, none of the detected contaminants exceed risk-based concentrations for this pathway.

In addition to these human exposure pathways, ecological exposure is possible through migration of contaminants to surface water and sediment in Hoquarten Slough and the former log ponds, and by long-term exposure to contamination in shallow soils by terrestrial organisms.

Figure A - Conceptual Site Model Sadri Property and East Parcels Tillamook, Oregon

Date		-	Table #1			
10/28/2014	Pathway	Receptor	Is Pathway Complete?	Is GRBC Exceeded?	Comments	
	Ingestion, Dermal Contact and Inhalation	Residential and/or Urban Residential	No	Yes	No residential or occupational receptors. Soil contaminants exceed GRBCs for	
		Occupational	No*	Yes		
		Construction Worker	Yes	Yes	Construction Worker and Excavation Worker.	
		Excavation Worker	Yes	Yes		
	Volatilization to Outdoor Air	Residential and/or Urban Residential	No	No	No soil contaminants exceed GRBCs.	
Soil		Occupational	No*	No		
	Vapor Intrusion Into	Residential and/or Urban Residential	No	No	No soil contaminants exceed GRBCs.	
	Buildings	Occupational	No*	No		
	Leaching to Groundwater	Residential and/or Urban Residential	No	No	Groundwater is not used for drinking water.	
		Occupational	No*	No		
	Ingestion & Inhalation From Tap Water	Residential and/or Urban Residential	No	No	- Groundwater is not used for drinking water.	
		Occupational	No	No		
	Volatilization to Outdoor Air	Residential and/or Urban Residential	No	No	No VOCs detected in groundwater.	
Groundwater		Occupational	No*	No		
	Vapor Intrusion Into Buildings	Residential and/or Urban Residential	No	No	No VOCs detected in groundwater.	
		Occupational	No*	No		
	Groundwater in Excavation	Construction and Excavation Workers	No*	No	No groundwater contaminants exceed GRBCs.	
Ecological		Terrestrial, Surface Water, Sediment	Yes	Yes	Concentrations in soil exceed Eco SSLs and SLVs for soil and sediment.	

Notes:

GRBC - Generic Risk Based

Concentration

* Pathway is complete only for the industrial-use scenario on the Sadri Property and will be evaluated separately from the actual proposed-use scenario.

8.0 RISK-BASED ANALYSIS

Human risk is being evaluated for the *take* soils for three separate pathways:

- 1) Risk associated with the exposure of construction workers and excavation workers to contaminated soils during the SFC project. (*Construction worker, Excavation worker* pathways)
- 2) Risk associated with the re-use of the *take* soils as fill material. The risk determination is used to classify the material for suitability for use off-site, on-site, and whether special controls will be required to control human exposure to the contaminants. (*All residential and occupational* pathways).
- 3) Risk associated with hypothetical occupational exposure on the portion of the Sadri property that is zoned for light industrial use. (*Construction worker, Excavation worker, Occupational Ingestion/Dermal contact,/Inhalation* pathways).

The proposed *leave* surfaces will be located in floodways and marshes where human exposure is not anticipated, therefore human risk will not be evaluated for these soils, except where the hypothetical occupational exposure is evaluated on the Sadri Property.

The soil analytical results are screened for human exposure using the DEQ's guidance document *Risk-Based Decision Making for the Remediation of Petroleum-Contaminated Sites, Oregon DEQ, Sept., 2003 (revised June 7, 2012).*

8.1 Take Soils

8.1.1 Construction and Excavation Workers - SFC Project

Contaminants were detected in the *take* soils above risked-based concentrations (RBCs) for exposure to construction workers around the West Mill (test pit TP-27), the East Mill (boring EM-1/test pit TP-15) and the East Parcels (test pit TP-30). The RBCs for the excavation worker pathway was exceeded for lead in test pit TP-30. These findings are shown graphically on Figure 4.

8.1.2 Re-Use of *Take* Soils as Fill Material

The results of the risk analysis of the *take* soils discussed in section 8.1.1 were used, together with the ecological risk analysis of the *take* soils, to classify the soils into one of three soil types that determines how that material is re-used or disposed of. This analysis is presented in section 10.2 of this report.

8.1.3 Occupational Exposure on Sadri Property

Contaminants were detected above risked-based concentrations (RBCs) in soil for occupational exposure around the West Mill (test pit TP-27 and boring WM-3/test pit TP-5), the East Mill (boring EM-1) and the East Parcels (test pit TP-30). The RBCs for the construction worker pathway were also exceeded in test pit TP-27. These findings are shown graphically on Figure 4.

Both locations on the West Mill where RBCs were exceeded for occupational exposure are located where the property is zoned for light industrial use. All other locations where occupational RBCs were exceeded are located on properties zoned for open space.

8.2 Leave Soils

The only location where the proposed *leave* soils exceed RBCs is test pit TP-6 (West Mill) where heavy oil exceeds the RBC for the construction worker pathway at a depth of 6 feet below ground surface.

None of the soils in the *leave* surfaces exceed any occupational RBCs.

		Constituent	Exposure Pathway Exceeded and
Contaminants of Potential	Maximum	of	Corresponding RBC in mg/kg
Concern	Concentration (mg/kg)	Concern?	(Occupational Use)
			Construction Worker (4,600)
Diesel	38,400	Yes	Dermal Contact/Ingest./Inhalation (14,000)
Heavy oil	15 500	N	Construction Worker (4,600)
	15,500	res	Dermal Contact/Ingest./Innalation (14,000)
Acenaphthylene	3.97	No	None
Anthracene	5.05	No	None
			Construction Worker (21)
Benzo(a)anthracene	29.2	Yes	Dermal Contact/Ingest./Inhalation (2.7)
Benzo(h)fluoranthene	56.7	N	Construction Worker (21)
Denzo(0)Huorantinene	50.7	res	Dermal Contact/Ingest./Innalation (2.7)
Benzo(k)fluoranthene	56.7	Yes	Dermal Contact/Ingest./Inhalation (27)
Benzo(a)nyrene	37 /	37	Construction Worker (2.1)
Delizo(a)pyrelie	57.4	Yes	Dermal Contact/Ingest./Inhalation (0.27)
Benzo(g,h,i)perylene	16.0	No	None
Chrusopa	20.2		
Chirysene	32.3	No	None Construction Worker (2.1)
Dibenz(a,h)anthracene	5.26	Yes	Dermal Contact/Ingest /Inhalation (0.27)
		105	
Flouranthene	36.8	No	None
Fluorene	0.58	No	None
		110	
Indeno(1,2,3)pyrene	19.8	Yes	Dermal Contact/Ingest./Inhalation (2.7)
Naphthalene	3.31	No	None
		110	
Phenanthrene	5.59	No	None
D	45.0		
Pyrene	45.3	No	None
Cadmium	5.55	No	None
		110	Construction Worker (800)
			Excavation Worker (800)
Lead	1,160	Yes	Dermal Contact/Ingest./Inhalation (800)
Mercury	0.24	N	N
	0.24	INO	None
Dioxin - HpCDD)	79.4	No	None
Dioxin (OCDD)	606	No	None
Diovin (TCDE)	2.84	N	
	2.04	INO	None
Dioxin (HpCDF)	15.2	No	None
Dioxin (OCDF)	65.0	No	None

Table A - Contaminants of Potential Concern (Soil)

9.0 ECOLOGICAL RISK ANALYSIS

Ecological risk is being evaluated for two separate pathways: 1) risk associated with the re-use of the *take* soils as fill material, either on the Subject Property or at off-site locations, and 2) risk associated with the soils on the *leave* surface that will remain after the removal of the *take* soils.

9.1 Terrestrial Receptors

Potential terrestrial ecological receptors at the site consist of plants, invertebrates, birds and mammals. The analytical results for inorganic compounds are initially screened against Coast Range background concentrations published in the DEQ document *Development of Oregon Background Metals Concentrations in Soil, March 2013*. Any results that exceed background concentrations are further evaluated by DEQ and EPA screening levels.

The soil analytical results are also screened for current and future terrestrial ecological exposures using EPA Ecological Screening Levels (Eco-SSLs). When the Eco-SSLs are not available, the lowest soil SLV for each chemical are used from Table 1 of DEQ's Guidance for Ecological Risk Assessment.

For terrestrial ecological screening of petroleum hydrocarbons, the Washington State Total Petroleum Hydrocarbon Screening Level Values are used.

9.2 Aquatic Receptors

Potential aquatic receptors consist of fish, aquatic-dependent birds, mammals, and invertebrates and plants. For invertebrate receptors, the soil analytical results are screened against screening Table 2 of the DEQ Level II SLVs. Given the potential for soil erosion into sensitive wetland environments, the soil concentrations in both the *take* and *leave* soils will be screened in this manner.

For aquatic-dependent birds, mammals and fish, the bioaccumulative compounds are screened against Table A-1 of the DEQ document *Guidance for Assessing Bioaccumulative Chemicals of Concern in Sediment (January 31, 2007, updated April 3, 2007)*.

9.3 Take Soils

Contaminants were detected in the *take* soils above one or more ecological screening level around the West Mill (test pits TP-3, TP-5, TP-6, TP-27), the East Mill (boring EM-1, test pit TP-16, TP-17), the sawdust burner (TP-7) and the East Parcels (test pit TP-19, TP-30). Ecological screening levels were also exceeded in the samples collected on the Schmidt Property by Hart

Crowser in 2011. These findings are shown graphically on Figure 5.

The soils in these areas will be removed as part of the larger SFC project. Based on the re-use classification of these soils (section 10.2 of this report), some of these soils are expected to be suitable for use as fill on upland areas of the finished site.

9.4 Leave Soils

Contaminants were detected in the *leave* soils above one or more ecological screening level around the West Mill (test pits TP-5 and TP-6), the East Mill (test pit TP-14, TP-15 and TP-16), and the East Parcels (TP-19).

Soil samples collected from above the *leave* surface on the East Parcels by Hart Crowser in 2011 exceeded ecological screening levels. Deeper samples below the *leave* surface were not collected, therefore the potential impact to the *leave* surface on the south portion of the East Parcels is not known. These findings are shown graphically on Figure 7.

9.5 Sediment Screening

The two sediment samples from the Inlet Pond (samples IP-3 and IP-4) contained lead between 13.6 and 29.5 milligrams per kilogram. These concentrations are below the EPA Eco SSLs, DEQ Soil SLVs and DEQ Sediment SLVs. Based on this information, the elevated concentration of lead in the previously-collected sediment sample (sample IP1-1) appears to be an isolated condition.

10.0 DISPOSAL AND RE-USE OF EXCAVATED MATERIALS

The approximate volume of material that is proposed to be removed from the Subject Property during the SFC project (*take* soil) was calculated by measuring the approximate area covered by soil and fill at one-foot elevation increments and adding the volume of each "layer" to develop the total estimated volume. Based on this method, it is estimated that approximately 34,500 cubic yards of soil, wood waste and other fill material will be removed from the Subject Property north of the dig line.

The approximate volume of contaminated *take* soil was estimated using the same method using the boundaries of the contaminated *take* soils shown on Figure 6. Based on the sampling completed to date, it's estimated that 20,000 cubic yards of the *take* soil (58% of the Subject Property) have been impacted by contaminants to some degree. This is estimate is based on a limited number of sampling points, particularly on the East Parcels, which are spaced as much as 75 to 150 feet apart. Assumptions were made that the soils between the sample points were also impacted to the same degree, resulting in a conservative estimate that should be considered to be a maximum volume of impacted soils.

The goal is to re-use as much of this material as fill, either on-site or off-site, minimizing the need for costly trucking and disposal of the material to a Subtitle D landfill. The closest such landfill is Waste Management's facility in Hillsboro, Oregon, located 65 miles east of Tillamook.

10.1 Regulatory Framework for Re-Use of Fill Material

In July 2014, Oregon DEQ released an Internal Management Directive (IMD) entitled *Clean Fill Determinations*. The purpose of the document was to address the need for determining whether waste generated during construction projects or by dredging projects qualifies as clean fill. The rules define clean fill and allow DEQ to exempt clean fill from regulations, avoiding the need to regulate certain fill material as solid waste.

To qualify as clean fill under the IMD, the material must:

- 1) consist of soil, rock, concrete, brick, building block, tile, or asphalt paving (large pieces, not ground up) which do not contain contaminants that could adversely impact the waters of the state or public health,
- 2) must not appear to be chemically stained or have a chemical odor,
- 3) must not contain a listed or characteristic hazardous waste, and
- 4) must not contain a chemical or metal that exceeds the clean fill table values in the IMD.

The screening levels in the clean fill tables use natural background concentrations as the criteria

for metals as published in the DEQ Cleanup Program Technical Report: *Development of Oregon Background Metals Concentrations in Soil (March, 2013)*. The screening levels for organic compounds are based primarily on the lowest risk-based concentration for soil on DEQ's Risk-Based Decision Making table, the EPA's Regional Screening Level table, or DEQ's Ecological Screening Level Values, whichever is lowest. For some metals and PAHs, EPA Ecological Soil Screening Levels (SSLs) were available and were used.

These screening levels are hereafter referred to as the *Clean Fill Criteria*.

10.2 Classification and Options for Re-Use of Excavated Materials

10.2.1 Classification Based on Contaminant Concentrations

Three re-use options were developed for clean and contaminated fill material excavated from the Subject Property. The resulting soil type classifications are described in the following table. The classification for each soil sample is given in Tables 1 and 2. Figure 6 shows the general distribution of these soil classification types.

These criteria may be refined in the future as part of the SFC project or during the development of the Sadri Property/East Parcel Contaminated Media Management Plan (CMMP).

Fill Type Classification Criteria		Re-Use and Disposal Options	
Туре 1	Clean fill in which no contaminants have been detected or are present below ecological screening levels and Clean Fill Criteria. Metals are present at or below natural background concentrations.	Material can be used as fill throughout the larger SFC project site or other areas around Tillamook.	
Туре 2	Fill material in which organic contaminants have been detected above ecological screening levels but below Clean Fill Criteria. Metals are present at or below natural background	Material may be suitable for re-use as fill within upland areas off-site or on site but with controls such as clean fill cover or cap. Re-use off site may require meeting Solid Waste requirements.	
	concentrations.	Disposal at Subtitle D landfill (Hillsboro)	
Туре 3	Fill material in which organic contaminants have been detected above ecological screening levels and Clean Fill Criteria. Metals are present above natural background concentrations.	Material may be suitable for re-use as fill within upland areas on site only. Same controls as Type 2 soils except may require an impermeable liner or cap to further prevent migration of contaminants. Material containing free product will require landfilling.	
		Disposal at Subtitle D landfill (Hillsboro)	

10.2.2 Buried Concrete Waste and Above-Ground Concrete Structures

A significant volume of large concrete pieces and slabs poured in place from truck and batch excesses are buried on the East Parcels. Much of this material is expected to be mixed with Types 2 and 3 contaminated fill. This material can be separated from the surrounding soil and may be suitable for disposal or re-use as Type 1 fill assuming it meets the DEQ clean fill criteria.

Large, above-ground concrete structures are located near the East and West Mills. The material making up these structures may also be suitable for disposal or re-use as Type 1 fill assuming it meets clean fill criteria.

10.2.3 Buried Woody Debris

A significant volume of woody debris consisting of wood chips, sawdust, tree branches and logs are buried throughout the Subject Property. These materials located within the zones of soil type 1 should be suitable for use as fill or compost, assuming the materials do not display any staining, odors or other evidence of contamination. Woody material within the zones of soil types 2 and 3 should be treated in the same manner as the soil from these zones.

10.3 Estimated Volumes of Fill Types

Estimated volumes of fill types were calculated by measuring the estimated areal extent of the fill types and the estimated thickness of the *take* soils. An extra 10% should be added to these values to account for any necessary over-excavation, including soil removal below the *leave* surface.

Estimated Volumes of Fill Types (cubic yards)				
	Type 1	Type 2	Type 3	Total Estimated Volume of Fill to be
				Removed
West Mill		700	1,600*	
East Mill	12 700	1,900	1,400	
Sawdust Burner	15,700	700	0	
East Parcels		6,300	8,200	
TOTAL	13,700	9,600	11,200	34,500

* Up to 300 cubic yards of this material will require landfilling due to the presence of free product (heavy oil) in the area.

10.4 Estimated Cost for Removal of Soil Exceeding RBCs (Sadri Property)

The total volume of soil that exceeds RBCs for occupational exposure, construction workers and excavation workers on the portion of the Sadri Property that is zoned for industrial use is estimated to be 576 cubic yards. All of these soils are located around the West Mill. This figure includes 140 cubic yards of soil around TP-27 (1,250 square feet, 3 feet deep) and 436 cubic yards of soil around TP-5 and TP-6 (1,960 square feet, 6 feet deep). The other areas of the Sadri property where the contaminants exceed risk-based concentrations (TP-15, near the East Mill) are in areas that are zoned for Open Space and have limited potential for occupational exposure, based on the current zoning.

The approximate cost to excavate, transport and dispose of the material at Hillsboro Landfill and to backfill and compact the area with clean, engineered fill is estimated to be \$62,960. The

11.0 SUMMARY AND CONCLUSIONS

Twenty-four test pits were completed on the Subject Property in areas known as the Sadri Property and the East Parcels. The purpose of the investigation was to assess the contaminant concentrations in the soil prior to the removal of soils from the area as part of the Southern Flow Corridor (SFC) project. The concentrations were compared to human health risk-based concentrations and ecological screening levels to evaluate current human and ecological risk and also to determine the disposal and re-use options for the material, both on-site and off-site.

AGI has estimated that 34,500 cubic yards of material will be removed from the Subject Property as part of the SFC project. These soils were classified into three types for the purpose of disposal and re-use. The goal is to maximize the volume of material that can be re-used as clean fill, either on-site or on other properties in the Tillamook area.

Approximately 13,700 cubic yards of the material should qualify as clean fill (Type 1) which can be used throughout the SFC project or in other areas around Tillamook without special environmental restrictions.

Approximately 9,600 cubic yards of the material contains organic compounds above ecological screening levels but below the DEQ clean fill screening levels (Type 2). This material should be suitable for re-use as fill in upland areas both on site and off site but with controls such as clean fill cover to limit erosion and migration of contaminants into sensitive ecological environments.

Approximately 11,200 cubic yards of the material contains organic compounds above ecological screening levels and DEQ clean fill screening levels (Type 3). Most of this material should be suitable for re-use as fill in upland areas on site only with additional controls such as an impermeable liner or cap to further limit erosion and migration of contaminants into sensitive ecological environments and to limit human exposure to the contaminated material. Material

containing free product, including some of the soil near the West Mill, is unsuitable for re-use and will require disposal at a Subtitle D landfill.

It has been proposed that the area between the no-dig line and Front Street be used as a permanent containment cell for the placement of Type 3 and possibly Type 2 soils. This area is approximately 90,000 square feet in area and would be raised approximately 3.4 feet in elevation with the placement of all of the Type 3 soils. This area may be eventually used as a parking lot and a day-use visitor area.

A significant amount of the fill within the Type 2 and Type soils on the East Parcels consists of large pieces and slabs of concrete which may be classified as Type 1 material if it meets DEQ's criteria for clean fill, allowing the material to be disposed of or re-used off-cite as clean fill.

A Contaminated Media Management Plan (CMMP) should be developed for the Subject Property that describes the proposed measures for protection of human health and the environment during soil excavation and placement for disposal. In addition, the site preparation, construction and capping for the containment cell will need to be engineered such that the mobility of contaminants in the fill material is controlled.

12.0 LIMITATIONS

This report was prepared for Tillamook County, Oregon. This report is not intended for use by others without written consent from Anderson Geological, Inc. Within the limitations of scope, schedule and budget, our services have been executed in accordance with generally accepted environmental science practices in this area at the time the report was prepared. No warranty or other conditions, expressed or implied, should be understood.

Our interpretation of subsurface conditions in this study is based on field observations and chemical analytical data from a limited number of sampling locations. It is possible that contamination exists in areas that were not explored, sampled, or analyzed.

ANDERSON GEOLOGICAL, INC.

Erik Anderson, R.G. Hydrogeologist

References

Anderson Geological, Inc., 2013. Phase I Environmental Site Assessment, November 22, 2013.

DEQ, 1998, *Guidance for Ecological Risk Assessment: Levels I, II, III and IV*. April 1998. Level II Screening Values (Tables 1 and 2) updated December 2001.

DEQ, 2003, *Risk-Based Cleanup Rules for the Remediation of Petroleum-Contaminated Sites* (September 22, 2003). Revised June 7, 2012.

FIGURES

TABLES

Table 1 Soil Analysis Summary - Take Soils (TPH, PAHs) Sadri Property, Tillamook, Oregon

					Petro Hydroc	leum arbons	PAHs															
Sample Number	Sample Location	Sample Depth (ft)	Soil Type (1)	Date Collected	Diesel	Heavy oil	Acenaphthene	Acenaphthylene	Anthracene	Benz(a)anthracene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Benzo(a)pyrene	Benzo(g,h,l)perylene	Chrysene	Dibenz(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-cd)pyrene	Naphthalene	Phenanthrene	Pyrene
TP1-0-1T		0-1	1	9/3/2014	20.7J	38.3J	< 0.00316	<0.00316	<0.00316	0.0041J	0.008	75J	0.00421J	0.00494J	0.00548J	< 0.00316	0.00926	< 0.00316	0.00449J	0.0098J	0.00931	0.00814
TP2-0-4T		0-4	1	9/3/2014	<16.6	63.9J	< 0.00352	0.00567J	< 0.00352	0.00743	0.02	09	0.0144	0.0113	0.0122	< 0.00352	0.0226	0.00460J	0.0106	0.0204	0.0234	0.021
TP3-0-51	West Mill	0-5	2	9/3/2014	540	284	< 0.00376	0.00599J	0.00385J	0.0108	0.02	57	0.0103	0.0128	0.0132	< 0.00376	0.0236	< 0.00376	0.0130	0.0158	0.0187	0.021
TP4-0-31		0-3	1	9/3/2014	<31.6	135	<0.00334	0.00484J	<0.00334	0.00603J	0.02	26	0.00825	0.0146	0.0136	<0.00334	0.0353	<0.00334	0.0115	0.0561	0.0369	0.0242
TP7-0-21		0.2	1	9/3/2014	<25.0	39.I	<0.00212	<0.00212	<0.00212	0.00270J	0.007	50J	0.003423	0.003133	0.003153	<0.00212	0.00514	<0.00212	0.00301	<0.00425	0.00300J	0.0046
TP8-0-2 5T		0-2.5	1	9/3/2014	42.1J	<00.9	<0.003383	<0.0213	<0.008233	<0.0133	<0.02	<0.00202	<0.0100	<0.00202	<0.0133	<0.0031	<0.0400	<0.00202	<0.0134	<0.00807	<0.0000202	<0.0439
TP9-0-2.5T	Sawdust Burner	0-2.5	1	9/3/2014	-	_	-		-	-	-	-	-			-			-	-	-	-
TP11-0-3T	ounddor Dunior	0-3	1	9/3/2014	<11.6	<23.2	< 0.00213	< 0.00213	< 0.00213	< 0.00213	<0.00213	<0.00213	< 0.00213	< 0.00213	< 0.00213	< 0.00213	< 0.00213	< 0.00213	< 0.00213	< 0.00427	< 0.00213	< 0.00213
TP12-0-2T		0-2	3	9/3/2014	<19.4	106	<0.00388	0.00892	0.00427J	0.00810	0.01	94	0.00858	0.00928	0.0109	<0.00388	0.0276	0.00414J	0.00881	0.102	0.0478	0.0257
TP13-0-2T		0-2	1	9/4/2014	<16.5	144	< 0.00359	< 0.00359	< 0.00359	0.00454J	0.014	IOJ	0.00374J	0.0163	0.00763	< 0.00359	0.0127	< 0.00359	0.0139	0.0202	0.0163	0.00989
TP14-0-2.5T	E (b C)	0-2	2	9/4/2014	<19.2	203	0.00367	0.00550J	< 0.00367	0.00532J	0.011	8J	0.00593J	0.00771	0.00734	< 0.00367	0.0193	0.00372J	0.00704J	0.0615	0.0269	0.0180
TP16-0-2.5T	East Mill	0-2.5	3	9/4/2014	<42.3	373	<0.0205	0.0210J	0.0255J	0.116	0.25	j2	0.155	0.319	0.150	0.0249J	0.279	<0.205	0.235	0.135	0.144	0.224
TP17-0-3T		0-3	3	9/4/2014	<25.3	317	<0.0249	0.0537	0.0326J	0.0874	0.26	64	0.125	0.323	0.144	<0.0249	0.361	<0.0249	0.240	0.395	0.343	0.332
TP18-0-6T		0-6	1	9/4/2014	<16.4	38.3J	<0.0302	0.00302	0.00302	0.00378J	<0.008	358J	0.00387J	0.00937	0.00320J	0.00308J	0.00785	< 0.00302	0.00657	0.0200	0.0101	0.00514J
TP19-0-7T	East Parcel	0-7	3	9/4/2014	<11.4	113	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
TP20-4-81		0-8	3	9/4/2014	<10.5	117	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Oregon Gener	ic Risk-Based Le	evels (Occu	pational)																			
Soil Ingestion,	Dermal Contact, I	nhalation	. ,		14,000	14,000	61,000	ne	>Csat	2.7	2.7	27	0.27	ne	250	0.27	29,000	41,000	2.7	23	ne	21,000
Volatilization T	o Outdoor Air				>Max	>Max	>Max	ne	>Max	NV	NV	NV	NV	ne	>Csat	NV	NV	NV	NV	99	ne	>Csat
Construction W	/orker				4,600	4,600	19,000	ne	93,000	21	21	210	2.1	ne	2,100	2.1	8,900	12,000	21	580	ne	6,700
Excavation Wo	orker				>Max	>Max	>Csat	ne	>Max	590	590	5,900	59	ne	57,000	59	>Csat	>Max	590	16,000	ne	>Csat
EPA Eco-SSL	5																					
Soil Invertebrat	les				ne	ne	29	29	29	18	18	18	18	18	18	18	18	29	18	29	18	18
Wildlife - Avian	1				ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne
Wildlife - Mamr	malian				ne	ne	100	100	100	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	100	1.1	100	1.1	1.1
Oregon DEQ S	Soil SLVs (Table	1)																				
Plants					ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	10	ne	ne
Invertebrates					ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	30	ne	ne	ne	ne
Birds					ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne
Mammals					ne	ne	ne	ne	ne	ne	ne	ne	125	ne	ne	ne	ne	ne	ne	3,900	ne	ne
Oregon DEQ S	Sediment SLVs (1	Table 2)					0.20	160	0.057	0.020		0.027	0.022	0.30	0.057	0.022	0.111	0.077	0.017	0.176	40	0.053
Fieshwater					ne	ne	0.29	160	0.057	0.032	ne	0.027	0.032	0.30	0.057	0.033	0.111	0.077	0.017	0.176	42	0.053
	Clean Fill Criteri	-					110	ne	20	0.15	0.15	14	0.10	ne	14	0.015	20	116	0.45	0.097	ne	1 700
Uregon DEQ -	Ciean Fill Criteri	a			ne	ne	29	ne	29	0.15	0.15	1.1	0.015	-	14	0.015	29	29	0.15	0.087	ne	1,700
Washington S	tate TPH Screeni	ing Level V	alues																			
Soil biota		-			200	200	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	30	ne	ne	ne	ne
Wildlife	-				6,000	6,000	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne

All values in milligrams per kilogram (mg/kg)

Generic Risk-Based Levels are based on Risk-Based Decision Making for the Remediation of Petroleum-Contaminated Sites, Oregon DEQ, Sept., 2003 (revised June 7, 2012)

>Csat: The soil RBC exceeds the saturation limit of the soil

J: This is an estimated value. The value is below the method reporting limit but above the limit of detection. >Max: The constituent RBC for this pathway is greater than 100,000 mg/kg.

ne - Not established

NV: This chemical is considered "non-volatile" for purposes of the exposure calculations

- Sample not analyzed

(1) "Take" soils were classified for options regarding disposal and re-use during the SFC project based on contaminat concentrations. See report for definitions of soil types. Concentration exceeds one or more risk-based concentration, ecological screening level or Clean Fill Criteria.

Table 1 (cont.) Soil Analysis Summary - Take Soils (TPH, PAHs) - cont. Sadri Property, Tillamook, Oregon

					Petro Hydroc	leum arbons								PA	Hs							
Sample Number	Sample Location	Sample Depth (ft)	Soil Type (1)	Date Collected	Diesel	Heavy oil	Acenaphthene	Acenaphthylene	Anthracene	Benz(a)anthracene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Benzo(a)pyrene	Benzo(g,h,l)perylene	Chrysene	Dibenz(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-cd)pyrene	Naphthalene	Phenanthrene	Pyrene
WM1-2		2	3	1/21/2014	<45.4	330	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
WM2-1	West Mill	1	3	1/21/2014	<67.8	1,290	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
WM3-1		1	3	1/21/2014	<956	2,680	<0.10	0.547	0.242	0.763	2.	74	1.23	0.93	1.34	0.235	1.92	0.134	1.05	0.117	1.62	1.79
EM1-2		2	3	1/21/2014	<207	721 - 22 1	<0.0955	3.97	5.05	29.2	55	. ./	37.4	16.0	32.3	5.26	36.8	0.580	19.8	3.31	5.59	45.3
EM3-2	East Mill	2	3	1/21/2014	<68.1	<136	_	_	_	_	_	_	_	_	_		_	_	_		_	_
EM4-1	Last Will	1	2	1/21/2014	<42.8	326	<0.0194	0.0209	<0.0194	<0.0194		194	<0.0194	<0.0194	<0.0194	~0 0194	<0.0194	<0.0194	<0.0194	0.02	<0.0194	0 0195
EM5-1		1	1	1/21/2014	<41.3	140	<0.0134	-	-	-	- <0.0	-	-	-	-	<0.0134	-	<0.0134	<0.0134	-	<0.0134	-
TP27-1		1	3	5/29/2014	2.380	4.830	-	_	-	_	_	-	-	-	-	-	-	-	_	-	-	_
TP27-2.5	West Mill	2.5	3	5/29/2014	38,400	15,500	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
TP29-1	E	1	1	5/29/2014	<60.2	145	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
TP29-2.5	East Mill	2.5	3	5/29/2014	<81.8	<120	< 0.0331	< 0.0331	< 0.0331	< 0.0331	< 0.0331	< 0.0331	< 0.0331	< 0.0331	< 0.0331	< 0.0331	< 0.0331	< 0.0331	< 0.0331	0.121	< 0.0331	< 0.0331
TP30-1		1	3	5/29/2014	<34.6	<69.2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
TP30-3	Schmidt Property	3	3	5/29/2014	<1,100	2,190	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
TP30-6		6	1	5/29/2014	<41.9	<83.9	< 0.0164	< 0.0164	< 0.0164	< 0.0164	< 0.0164	< 0.0164	< 0.0164	< 0.0164	< 0.0164	<0.0164	< 0.0164	< 0.0164	< 0.0164	<0.0164	< 0.0164	< 0.0164
HC-1	Sonic boring HC-1	5-6	3	5/9/2011	34	190	-	-	-	-	-	-	1	-	1	-	-	-	-	-	-	-
HC-2	Sonic boring HC-2	6.5	2	5/9/2011	57	360	<0.11	<0.011	0.0017	0.0058	0.098	0.0036	0.012	0.0058	0.018	<0.011	0.019	<0.011	<0.011	<0.011	0.0081	0.018
HC-3	Sonic boring HC-3	8	3	5/9/2011	37	200	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
HC-4	Sonic boring HC-4	4.5	3	5/9/2011	10	89	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
HC-5	Sonic boring HC-5	5-6	1	5/9/2011	<5.0	<12	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
HC-6	Sonic boring HC-6	5-6	3	5/9/2011	780	7,400	0.050	0.018	0.022	0.024	0.031	0.0081	0.020	0.0087	0.031	<0.011	0.052	0.035	0.0078	0.022	0.076	0.042
HC-7	Sonic boring HC-7	0-1	1	5/9/2011	<5.1	13	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Oregon Gen	eric Risk-Based Lev	els (Occupa	ational)																			
Soil Ingestion	, Dermal Contact, Inh	alation			14,000	14,000	61,000	ne	>Csat	2.7	2.7	27	0.27	ne	250	0.27	29,000	41,000	2.7	23	ne	21,000
Volatilization	To Outdoor Air				>Max	>Max	>Max	ne	>Max	NV	NV	NV	NV	ne	>Csat	NV	NV	NV	NV	99	ne	>Csat
Vapor Intrusi	on into Building				>Max	>Max	>Max		>Max	NV	NV	NV	NV	ne	>Csat	NV	NV	NV	NV	99		>Csat
Construction	Worker				4,600	4,600	19,000	ne	93,000	21	21	210	2.1	ne	2,100	2.1	8,900	12,000	21	580	ne	6,700
Excavation V	/orker				>Max	>Max	>Csat	ne	>Max	590	590	5,900	59	ne	57,000	59	>Csat	>Max	590	16,000	ne	>Csat
FPA Eco-SS	ls																					
Soil Invertebr	ates				ne	ne	29	29	29	18	18	18	18	18	18	18	18	29	18	29	18	18
Wildlife - Avia	an				ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne
Wildlife - Mar	nmalian				ne	ne	100	100	100	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	100	1.1	100	1.1	1.1
Oregon DEC	Soil SLVs (Table 1))																				
Plants					ne	ne	ne	ne	ne	pe	ne	ne	ne	ne	ne	ne	ne	ne	ne	10	ne	ne
Invertebrates					ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	30	ne	ne	ne	ne
Birds					ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne
Mammals					ne	ne	ne	ne	ne	ne	ne	ne	125	ne	ne	ne	ne	ne	ne	3,900	ne	ne
Oregon DEC	Sediment SLVs (Ta	ıble 2)																		•		
Freshwater					ne	ne	0.29	160	0.057	0.032	ne	0.027	0.032	0.30	0.057	0.033	0.111	0.077	0.017	0.176	42	0.053
Bioaccumula	1 1 1 1 1 1 1 1 3 5/ 2.5 East Mill 1 1 5/ 2.5 3 5/ 5/ 2.5 3 5/ 5/ 2.5 3 5/ 5/ 1 1 3 5/ -3 Schmidt Property 3 3 5/ -6 1 5.6 1 5/ Sonic boring HC-1 5-6 3 5 Sonic boring HC-2 6.5 2 5 Sonic boring HC-3 8 3 5 Sonic boring HC-6 5-6 1 5 Sonic boring HC-6 5-6 1 5						ne	ne	ne	ne	ne	ne	0.10	ne	ne	ne	ne	ne	ne	ne	ne	ne
Oregon DEC	- Clean Fill Criteria				ne	ne	29	ne	29	0.15	0.15	1.1	0.015	ne	14	0.015	29	29	0.15	0.087	ne	1,700
Washington	State TPH Screenin	g Level Valı	les		200	200	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	30	ne	ne	ne	ne
Wildlife					6,000	6,000	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne
					0,000	0,000																

All values in milligrams per kilogram (mg/kg)

Generic Risk-Based Levels are based on Risk-Based Decision Making for the Remediation of Petroleum-Contaminated Sites, Oregon DEQ, Sept., 2003 (revised June 7, 2012)

>Csat: The soil RBC exceeds the saturation limit of the soil

J: This is an estimated value. The value is below the method reporting limit but above the limit of detection.

>Max: The constituent RBC for this pathway is greater than 100,000 mg/kg.

ne - Not established

NV: This chemical is considered "non-volatile" for purposes of the exposure calculations

- Sample not analyzed

(1) "Take" soils were classified for options regarding disposal and re-use during the SFC project based on contaminat concentrations. See report for definitions of soil types.

Concentration exceeds one or more risk-based concentration, ecological screening level or Clean Fill Criteria.

Table 2 Soil Analysis Summary - Take Soils (Metals) Sadri Property, Tillamook, Oregon

								Ме	tals			
Sample Number	Sample Location	Sample Depth (ft)	Soil Type (1)	Date Collected	Arsenic	Barium	Cadmium	Chromium	Lead	Mercury	Selenium	Silver
TP1-0-1T		0-1	1	9/3/2014	-	-	0.366	-	10.5	-	_	-
TP2-0-4T		0-4	1	9/3/2014	-	-	0.364J	-	9.18	_	-	-
TP3-0-5T	West Mill	0-5	2	9/3/2014	-	-	0.495	-	20.2	-	-	-
TP4-0-3T		0-3	1	9/3/2014	-	-	0.448	-	14.8	_	-	-
TP6-0-2T		0-2	1	9/3/2014	-	-	0.227	-	2.80	-	-	-
TP7-0-3T		0-3	3	9/3/2014	-	-	-	-	-	-	-	-
TP8-0-2.5T		0-2.5	1	9/3/2014	-	-	-	-	-	-	-	-
TP9-0-2.5T	Sawdust Burner	0-2.5	1	9/3/2014	-	-	-	-	-	-	-	-
TP11-0-3T		0-3	1	9/3/2014	0.418J	116	0.246	28.0	1.84	< 0.0492	0.713J	<0.123
TP12-0-2T		0-2	3	9/3/2014	2.90	216	0.283J	40.0	25.3	< 0.0872	1.09J	<0.218
TP13-0-2T		0-2	1	9/4/2014	-	97.1	<0.201	-	15.9	-	-	-
TP14-0-2.5T	E MU	0-2	2	9/4/2014	-	147	0.343J	-	22.0	-	-	-
TP16-0-2.5T	East Mill	0-2.5	3	9/4/2014	-	659	1.01	-	124	-	-	-
TP17-0-3T		0-3	3	9/4/2014	-	153	0.589	-	48.3	_	_	-
TP18-0-6T		0-6	1	9/4/2014	5.29	57.4	<0.201	46.4	7.50	< 0.0802	<1.00	<0.201
TP19-0-7T	East Parcels	0-7	3	9/4/2014	3.00	93.2	0.621	24.5	78.1	<0.0675J	<0.647	<0.129
TP20-4-8T		0-8	3	9/4/2014	3.96	135	0.362	56.4	159	0.227	<0.127J	<0.139
	a Diala Daarad Lawala	(O	-1									
Oregon Generi	C RISK-Based Levels	(Occupation	ai)		17	> Mox	510	> Mox	800	210	20	5 100
Velotilization To	Outdoor Air				1.7 NIV		STU NIV		800 NIV	510	ne	5,100 NIV
Vopor Intrusion	into Ruilding					INV NIV	INV NIV	IN V NIV			ne	
Construction W	nito Building				12	60.000	150	NV Nov	800	02	ne	1 500
Excavation Wor	rker				370	>Max	130	>Max	800	2 600	ne	1,300
	KCI				570	ZIVIAN	4,500	ZividA	000	2,000	ne	4,300
EPA Eco SSLs									. =00			
Soil Invertebrate	es				NA	330	140	NA	1,700	NA	4.1	NA
Wildlife - Avian					43	na	0.77	26	11	NA	1.2	4.2
vviidilite - iviamm	nalian				46	2,000	0.36	34	56	NA	0.63	14
Oregon DEQ S	oil SLVs (Table 1)											
Plants					10	500	4	1	50	0.3	1	2
Invertebrates					60	3,000	20	0.4	500	0.1	70	50
Birds					10	85	6	4	16	1.5	2	ne
Mammals					29	638	125	340,000	4,000	73	25	ne
Oregon DEQ S	ediment SLVs (Table	2)										
Freshwater					6	ne	0.6	37	35	0.2	ne	4.5
Bioaccumulation	n				4	ne	0.003	4,200	128	ne	0.1	ne
Oregon DEQ -	Clean Fill Criteria				12	840	0.54	240	34	0.11	1.5	0.41
								-			-	-
Default backgro	und concentrations (a)											
Soil					12	840	0.54	240	34	0.11	1.5	0.41

All values in milligrams per kilogram (mg/kg)

Generic Risk-Based Levels are based on Risk-Based Decision Making for the Remediation of Petroleum-Contaminated Sites, Oregon DEQ, Sept., 2003 (revised June 7, 2012)

>Csat: The soil RBC exceeds the saturation limit of the soil

J: This is an estimated value. The value is below the method reporting limit but above the limit of detection.

>Max: The constituent RBC for this pathway is greater than 100,000 mg/kg.

ne - Not established

NV: This chemical is considered "non-volatile" for purposes of the exposure calculations

- Sample not analyzed

Highlighted cells exceed the indicated screening values and background concentrations.

(1) "Take" soils were classified for options regarding disposal and re-use during the SFC project based on contaminat concentrations.

See report for definitions of soil types.

Concentration exceeds one or more risk-based concentration, ecological screening level or Clean Fill Criteria.

Table 2 (cont.) Soil Analysis Summary - Take Soils (Metals) Sadri Property, Tillamook, Oregon

								Met	als			
Sample Number	Sample Location	Sample Depth (ft)	Soil Type (1)	Date Collected	Arsenic	3arium	Cadmium	Chromium	-ead	Mercury	Selenium	Silver
WM1-2		2	2	1/21/2014	5.26	53.5	0.638	52.0	25.6	<0.176	<2.20	< 0.440
WM2-1	West Mill	1	1	1/21/2014	3.90	112	0.692	34.5	62.2	<0.252	<3.14	<0.629
WM3-1		1	1	1/21/2014	3.48	93.9	0.599	30.1	98.4	<0.184	<2.30	<0.461
EM1-2		2	2	1/21/2014	10.3	1,290	5.12	41.2	108	<0.167	<2.09	1.04
EM2-3		3	3	1/21/2014	5.57	261	0.606	53.2	14.3	<0.156	<1.96	<0.391
EM3-2	East Mill	2	2	1/21/2014	5.98	239	<0.683	38.3	39.0	<0.273	<3.42	<0.683
EM4-1		1	1	1/21/2014	-	-	-	-	-	-	-	-
EM5-1		1	1	1/21/2014	-	-	-	-	-	-	-	-
FILL1-1	Fill Area	1	1	1/21/2014	<3.12	67.6	<0.624	29.4	9.65	<0.250	<3.12	<0.624
FILL2-1		1	1	1/21/2014	3.58	78.2	<0.512	40.4	20.3	<0.205	<2.56	<0.512
TP27-1	Test pit TP-27	1	3	5/29/2014	7.61	-	2.39	-	355	-	-	-
TP27-2.5	Test pit TP-27	2.5	3	5/29/2014	<4.50	-	< 0.90	-	19.4	-	-	-
TP27-6	Test pit TP-27	6	3	5/29/2014	4.61	-	< 0.504	-	5.82	-	-	-
TP29-1	Test pit TP-29	1	1	5/29/2014	6.25	-	<0.510	-	30.4	-	-	-
TP29-2.5	Test pit TP-29	2.5	3	5/29/2014	<3.33	-	<0.665	-	15.0	-	-	-
TP30-1	Test pit TP-30	1	3	5/29/2014	4.09	-	0.603	-	108	-	-	-
TP30-3	Test pit TP-30	3	3	5/29/2014	0.35	-	2.50	-	1,160	-	-	-
HC-1	Sonic boring HC-1	5-6	3	5/29/2014	9.00	130	2.39	- 36	50	0 12		_
HC-2	Sonic boring HC-7	65	2	5/9/2011	7.9	43	<0.33	53	10	0.12		_
HC-3	Sonic boring HC-3	8	3	5/9/2011	9.8	240	<0.33	29	130	0.004	_	_
HC-4	Sonic boring HC-4	4.5	3	5/9/2011	4.2	210	0.14	27	100	0.24	-	_
HC-5	Sonic boring HC-5	5-6	1	5/9/2011	7.2	47	< 0.31	8.6	15	0.0037	-	-
HC-6	Sonic boring HC-6	5-6	3	5/9/2011	4.4	94	<0.46	31	30	0.072	-	-
HC-7	Sonic boring HC-7	0-1	1	5/9/2011	<1.3	130	< 0.32	38	18	0.015	-	-
Oragon Conori	o Rick Racod Lovola	(Occupation	al)									
Soil Indestion	Dermal Contact Inhalati	ion	iaij		17	-Max	510	->Max	800	310	ne	5 100
Volatilization To	Outdoor Air				NV	NV	NV	NV	NIV/	NV	ne	5,100 NV
Vapor Intrusion	into Building				NV	NV	NV	NV	NV	NV	ne	NV
Construction We	orker				13	60.000	150	>Max	800	93	ne	1.500
Excavation Wor	ker				370	>Max	4,300	>Max	800	2,600	ne	4,300
Soil Invertebrate	25				NA	330	140	NA	1.700	NA	4.1	NA
Wildlife - Avian					43	na	0.77	26	11	NA	1.2	4.2
Wildlife - Mamm	nalian				46	2,000	0.36	34	56	NA	0.63	14
Oregon DEQ S	oil SLVs (Table 1)											
Plants					10	500	4	1	50	0.3	1	2
Invertebrates					60	3,000	20	0.4	500	0.1	70	50
Mommele					10	620	105	4	16	1.5	2	ne
Oregon DEO S	ediment SI Vs (Table	2)			29	038	125	340,000	4,000	13	20	ne
Freshwater		-/			6	ne	0.6	37	35	0.2	ne	4.5
Bioaccumulation	n				4	ne	0.003	4,200	128	ne	0.1	ne
								.,				
Oregon DEQ -	Clean Fill Criteria				12	840	0.54	240	34	0.11	1.5	0.41
Default backgrou	und concentrations (a)											
Soil					12	840	0.54	240	34	0.11	1.5	0.41

All values in milligrams per kilogram (mg/kg)

Generic Risk-Based Levels are based on Risk-Based Decision Making for the Remediation of Petroleum-Contaminated Sites, Oregon DEQ, Sept., 2003 (revised June 7, 2012)

>Csat: The soil RBC exceeds the saturation limit of the soil

J: This is an estimated value. The value is below the method reporting limit but above the limit of detection.

>Max: The constituent RBC for this pathway is greater than 100,000 mg/kg.

ne - Not established

NV: This chemical is considered "non-volatile" for purposes of the exposure calculations

- Sample not analyzed

Highlighted cells exceed the indicated screening values and background concentrations.

(1) "Take" soils were classified for options regarding disposal and re-use during the SFC project based on contaminat concentrations. See report for definitions of soil types.

Concentration exceeds one or more risk-based concentration, ecological screening level or Clean Fill Criteria.

Table 3 Soil Analysis Summary - Take Soils (Dioxins/Furans) Sadri Property, Tillamook, Oregon

											Dio	xins/Fur	ans							
Sample Number	Sample Location	Sample Depth (ft)	Date Collected	2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)	1,2,3,7,8-Pentachlorodibenzo-p-dioxin (PeCDD)	1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)	1,2,3,6,7,8- Hexachlorodibenzo-p-dioxin (HxCDD)	1,2,3,7,8,9- Hexachlorodibenzo-p-dioxin (HxCDD)	1,2,3,4,6,7,8- Heptachlorodibenzo-p-dioxin (HpCDD)	1,2,3,4,5,6,7,8-Octachlorodibenzo-p-dioxin (OCDD)	2,3,7,8-Tetrachlorodibenzofuran (TCDF)	1,2,3,7,8-Pentachlorodibenzofuran (PeCDF)	2,3,4,7,8-Pentachlorodibenzofuran (PeCDF)	1,2,3,4,7,8-Hexachlorodibenzofuran (HxCDF)	1,2,3,6,7,8-Hexachlorodibenzofuran (HxCDF)	1,2,3,7,8,9-Hexachlorodibenzofuran (HxCDF)	2,3,4,6,7,8-Hexachlorodibenzofuran (HxCDF)	1,2,3,4,6,7,8-Heptachlorodibenzofuran (HpCDF)	1,2,3,4,7,8,9-Heptachlorodibenzofuran (HpCDF)	(0CDF) (0CDF)
TP11-0-3T	Sawdust Burner	0-3	9/4/2014	<0.162	0.213J	0.280J	0.815J	0.745J	16.2	138	0.238J	0.162J	<0.122	0.386J	0.193J	<0.116	<0.102	3.40J	<0.268	16.1
TP12-0-2T	Canador Barrior	0-2	9/4/2014	0.769J	1.33J	1.66J	4.15J	4.33J	79.4	606	2.84	0.758J	0.712J	1.77J	0.736J	0.116J	0.487J	15.2	0.950J	65.0
Oregon Gene	ric Risk-Based L	evels (Occ	upational)																	
Soil Ingestion,	Dermal Contact, Ir	nhalation		15	15	150	150	150	1,500	50,000	150	500	50	150	150	150	150	1,500	1,500	50,000
Volatilization T	o Outdoor Air			>Csat	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne
Vapor Intrusio	n into Building			>Csat	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne
Construction V	Vorker			150	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne
Excavation vvo	orker			4,200	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne
EPA Eco SSLs																				
Soil Invertebra	ites			ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne
Wildlife - Avlar	1 molion			ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne
		4)		ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne
Diants	Soli SLVS (Table	1)																		
rianis				ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne
Birde				55	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne
Mammals				120	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne
Oregon DEO	Sediment SI Ve (Table 2)		120	110	110	110	110	110	10	110	110	10	110	110	110	110	110	110	110
Freshwater	Countern OLV3 (9	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne
Bioaccumulati	on			0.85	0.85	8.5	8.5	8.5	85	2,833	8.5	28.3	2.83	8.5	8.5	8.5	8.5	85	85	2,833

All values in nanograms per kilogram (ng/kg)

Generic Risk-Based Levels are based on Risk-Based Decision Making for the Remediation of Petroleum-Contaminated Sites, Oregon DEQ,

Sept., 2003 (revised June 7, 2012)

>Csat: The soil RBC exceeds the saturation limit of the soil

J: This is an estimated value. The value is below the method reporting limit but above the limit of detection.

>Max: The constituent RBC for this pathway is greater than 100,000 mg/kg.

ne - Not established

NV: This chemical is considered "non-volatile" for purposes of the exposure calculations

- Sample not analyzed

Table 4 Soil Analysis Summary - Leave Soils (TPH, PAHs) Sadri Property, Tillamook, Oregon

			Petro Hydro	oleum carbons								PAHs	(mg/kg)								
Sample Number	Sample Location	Sample Depth (ft)	Date Collected	Diesel	Heavy oil	Acenaphthene	Acenaphthylene	Anthracene	Benz(a)anthracene	Benzo(b)fluoranthene	Benzo(k)fluor anthene	Benzo(a)pyrene	Benzo(g,'n,l)perylene	Chrysene	Dibenz(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-cd)pyrene	Naphthalene	Phenanthrene	Pyrene
TP1-6L		6	9/3/2014	<29.6	<59.2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
TP3-5L		5	9/3/2014	<22.8	63.1J	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
TP4-3L		3	9/3/2014	-	-	<0.00481	0.0151	<0.00481	<0.00481	<0.00481	<0.00481	<0.00481	<0.00481	<0.00481	<0.00481	0.00637J	0.00712J	<0.00481	0.0109J	0.0144	0.00687J
TP5-3.5L	West Mill	3.5	9/4/2014	<252	4,180	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
TP5-5V		5	9/4/2014	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
TP6-5V		5	9/3/2014	2,860J	13,000	0.0998	< 0.0639	<0.0959	<0.0639	0.1	18J	0.0812	<0.0320	<0.0799	<0.0320	0.170	0.134	<0.0320	0.226	0.327	0.188
TP27-5		5	5/29/2014	<61.1	<122	< 0.0264	0.0548	< 0.0264	< 0.0264	< 0.0264	< 0.0264	<0.0264	< 0.0264	< 0.0264	< 0.0264	< 0.0264	< 0.0264	< 0.0264	< 0.0264	< 0.0264	<0.0264
TP7-3L		3	9/3/2014	-	-	0.00696J	0.0373	0.00774J	0.00825J	0.0210		0.00631J	0.00933	0.00802J	< 0.00418	0.0410	0.0118	0.00741J	0.120	0.061	0.0435
TP8-2.5L		2.5	9/3/2014	-	-	<0.00184J	<0.00184J	< 0.00184	<0.00184J	<0.00184J	<0.00184J	<0.00184J	<0.00184J	<0.00184J	<0.00184J	<0.00184J	<0.00184J	<0.00184J	< 0.00367	< 0.00184	< 0.00184
TP9-2.5L	Countrat Dur	2.5	9/3/2014	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
TP10-6L	Sawdust Burner	6	9/3/2014	-	-	< 0.00506	0.214	0.00736L	0.0153	0.0	252	0.0134	0.0206	0.0133	< 0.00506	0.0444	0.0118	0.0154	0.139	0.0533	0.0464
TP11-3L		3	9/3/2014	-	-	_	_	_	_	-	-	_	_	_	_	_	_	_	-	_	_
TP12-4I		4	9/3/2014	_	-	<0.00385	<0.00385	<0.00385	0.004361	<0.00771	1	<0.00385	0.00500.1	<0.00385	<0.00385	0.00885	0.004721	0.003911	0.0200	0 0141	0.00960
TP13-21		2	9/4/2014	_	_	<0.00000	<0.00000	~0.00000	0.004000	<0.00111	_	<0.00000	0.000000	<0.00000	<0.00000	-	0.004720	0.000010	0.0200	0.0141	0.00000
TD14.2.51		2	0/4/2014	59.01	00.61	-0.00616	0.007501	-0.00616	0.000081		249	0.0155	0.0226	0.0160	-0.00616	0.0200	-0.00616	0.0174	0.0200	0.0220	0.0274
TP14-2.5L		2.5	9/4/2014	56.9J	99.6J	<0.00616	0.007503	<0.00616	0.00906J	0.0	240	0.0155	0.0226	0.0160	<0.00616	0.0200	<0.00616	0.0174	0.0300	0.0239	0.0371
TP15-3.5L	East Mill	3.5	9/4/2014	29.9J	56.5J	<0.00431	0.0141	0.005655	0.00653J	0.0	193	0.0108	0.0391	0.00799J	<0.00431	0.0339	<0.00631J	0.0254	0.0738	0.0427	0.0335
TP15-5V		5	9/4/2014	-	-	<0.00913	<0.00913	<0.00913	<0.00913	<0.00913	<0.00913	<0.00913	<0.00913	<0.00913	<0.00913	<0.00913	<0.00913	<0.00913	<0.0183	<0.00913	<0.00913
TP16-2.5L		2.5	9/4/2014	-	_	<0.00380	0.0114	0.00647J	0.0128	0.0	298	0.0161	0.0219	0.016	<0.0038	0.0444	<0.00743J	0.0174	0.115	0.0534	0.0412
TP17-3L		3	9/4/2014	<28.2	<56.4	<0.00457	<0.00457	<0.00457	<0.00457	<0.00457	<0.00457	<0.00457	<0.00457	<0.00457	<0.00457	<0.00457	<0.00457	<0.00457	< 0.00914	<0.00457	<0.00457
TP18-6L	East Parcels	6	9/4/2014	-	-	<0.00398	<0.00398	<0.00398	<0.00398	<0.00398	<0.00398	<0.00398	<0.00398	<0.00398	<0.00398	<0.00398	<0.00398	<0.00398	<0.00796	<0.00398	<0.00398
TP19-7L		7	9/4/2014	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
TP30-6	Schmidt Property	6	5/29/2014	<41.9	<83.9	<0.0164	<0.0164	<0.0164	<0.0164	<0.0164	<0.0164	<0.0164	<0.0164	<0.0164	<0.0164	<0.0164	<0.0164	<0.0164	<0.0164	<0.0164	<0.0164
Oregon Generi	c Rick-Racod Loval		nal)																		
Soil Indection	ormal Contact Inhals	stion	narj	14,000	14.000	61 000	20	> Coot	27	27	27	0.27	20	250	0.27	20.000	41.000	27	22	20	21 000
Volotilization To	Outdoor Air	auon		14,000 > Mox	14,000 > Mox	> Mox	ne	>USat	2.7	2.7	27	0.27	ne	200 > Coot	0.27	29,000	41,000	2.7 NV/	23	ne	21,000
Volatilization 10	into Building			>Iviax		>Iviax	ne	>Iviax	INV NIV	INV NIV	INV NIV	NV NV	ne	>Csat		NV NV	NV NV		99	ne	>Csat
Capatrustian Ma						>iviax	ne		111	21	210	1NV	ne	>USal	1NV	NV 8.000	12,000	111	99	ne	>0Sal
Construction we	JIKEI			4,600	4,600	19,000	ne	93,000	21	21	210	2.1	ne	2,100	2.1	8,900	12,000	21	560	ne	6,700
Excavation wor	ker			>Iviax	>iviax	>Csat	ne	>Iviax	590	590	5,900	59	ne	57,000	59	>Csat	>iviax	590	16,000	ne	>Csat
EPA Eco-SSLs									1												
Soil Invertebrate	S			ne	ne	29	29	29	18	18	18	18	18	18	18	18	29	18	29	18	18
Wildlife - Avian				ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	pe	ne	ne	ne	ne	ne	ne
Wildlife - Mamm	alian			ne	ne	100	100	100	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	100	1.1	100	1.1	1.1
Oregon DEQ Se	oil SLVs (Table 1)			110	10			100									100		100		
Dianta	. /																		40		
Plants				ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	10	ne	ne
Invertebrates				ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	30	ne	ne	ne	ne
Birds				ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne
Mammals				ne	ne	ne	ne	ne	ne	ne	ne	125	ne	ne	ne	ne	ne	ne	3,900	ne	ne
Oregon DEO Se	diment SI Vs (Tabl	e 2)																			
Freshwater		~ -1		ne	ne	0.29	160	0.057	0.032	ne	0.027	0.032	0.30	0.057	0.033	0 111	0.077	0.017	0.176	42	0.053
Bioaccumulation	`			00	00	0.23	100	0.007	0.002	00	0.027	0.002	0.00	0.007	0.000	0.111	0.077	0.017	0.170	74	0.000
				ne	ne	110	ile	110	110	0.45	118	0.10	ile	110	118	118	00	118	0.007	11E	118
Uregon DEQ - 0	Jiean Fill Criteria			ne	ne	29	ne	29	0.15	0.15	1.1	0.015	ne	14	0.015	29	29	0.15	0.087	ne	1,700
								+											+		
Washington Sta	ate TPH Screening I	Level Values																			
Soil biota				200	200	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	30	ne	ne	ne	ne
Wildlife				6,000	6,000	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne

All values in milligrams per kilogram (mg/kg)

Generic Risk-Based Levels are based on Risk-Based Decision Making for the Remediation of Petroleum-Contaminated Sites, Oregon DEQ, Sept., 2003 (revised June 7, 2012)

>Csat: The soil RBC exceeds the saturation limit of the soil

J: This is an estimated value. The value is below the method reporting limit but above the limit of detection.

>Max: The constituent RBC for this pathway is greater than 100,000 mg/kg.

ne - Not established

NV: This chemical is considered "non-volatile" for purposes of the exposure calculations

- Sample not analyzed

(1) "Take" soils were classified for options regarding disposal and re-use during the SFC project based on contaminat concentrations. See report for definitions of soil types.

Concentration exceeds one or more risk-based concentration, ecological screening level or Clean Fill Criteria.

Table 5 Soil Analysis Summary - Leave Soils (Metals) Sadri Property, Tillamook, Oregon

							Me	als			
Sample Number	Sample Location	Sample Depth (ft)	Date Collected	Arsenic	Barium	Cadmium	Chromium	Lead	Mercury	Selenium	Silver
TP1-6I		6	9/3/2014	_	_	_	_	_	_	_	_
TP3-5L		5	9/3/2014	_	_	_	_	_	_	_	_
TP4-3L		3	9/3/2014	-	-	-	-	-	-	-	-
TP5-3.5L	West Mill	3.5	9/4/2014	3.49	67.8	<0.276	38.3	14.8	<0.110	<01.37	<0.275
TP5-5V		5	9/4/2014	-	-	-	-	-	-	-	-
TP6-5V		5	9/3/2014	-	-	0.431J	-	75.8	-	-	-
TP27-5		5	9/3/2014	4.03	-	<0.548	-	5.12	-	-	-
1P7-3L		3	9/3/2014	-	-	-	-	-	-	-	-
TP8-2.5L		2.5	9/3/2014	-	-	-	-	-	-	_	_
TP10-6	Sawdust Burner	2.5	9/3/2014		_	_	_		_		_
TP11-3		3	9/3/2014	_	_	_	_	_	_	_	_
TP12-4L		4	9/3/2014	_	_	-	_	_	_	_	_
TP13-2L		2	9/4/2014	-	-	-	-	-	-	-	-
TP14-2.5L		2.5	9/4/2014	-	-	-	_	_	_	_	-
TP15-3.5L	East Mill	3.5	9/4/2014	-	65.8	0.387J	-	14.0	-	-	-
TP15-5V	East Will	5	9/4/2014	-	-	-	-	-	-	-	-
TP16-2.5L		2-Jan	9/4/2014	4.13	164	0.569	44.9	21.2	0.109J	<4.22	<0.422
TP17-3L		3	9/4/2014	4.57	138	0.770	49.3	6.29	<0.103	<1.28	<0.257
TP18-6L		6	9/4/2014	-	-	-	-	-	-	-	-
TP19-7L	East Parcels	7	9/4/2014	2.60	65.4	0.603	56.4	5.41	< 0.0635	<0.794	<0.159
1P30-6		6	5/29/2014	5.11	80.6	<0.379	50.2	6.84	<0.152	<1.89	<0.379
IP-3 IP-4	Inlet pond sediment	0-1	9/3/2014	_	-	-	_	29.5	_	_	-
Oregon Generi	c Risk-Based Levels	Occupatio	() () () () () () () () () () () () () (
Soil Indestion	Permal Contact Inhalati	on	inar)	17	>Max	510	>Max	800	310	ne	5 100
Volatilization To	Outdoor Air			NV	NV	NV	NV	NV	NV	ne	NV
Vapor Intrusion	into Building (incomple	te pathwav)	NV	NV	NV	NV	NV	NV	ne	NV
Construction We	orker		,	13	60,000	150	>Max	800	93	ne	1,500
Excavation Wor	ker			370	>Max	4,300	>Max	800	2,600	ne	4,300
FPA Eco SSI s											
Soil Invertebrate	25			NA	330	140	NA	1 700	NA	4 1	NA
Wildlife - Avian				43	na	0.77	26	11	NA	1.2	4.2
Wildlife - Mamm	nalian			46	2,000	0.36	34	56	NA	0.63	14
Oregon DEQ S	oil SLVs (Table 1)										
Plants				10	500	4	1	50	0.3	1	2
Invertebrates				60	3,000	20	0.4	500	0.1	70	50
Birds				10	85	6	4	16	1.5	2	ne
Mammals	-			29	638	125	340,000	4,000	73	25	ne
Oregon DEQ S	ediment SLVs (Table	2)									
Freshwater	•			6	ne	0.6	37	35	0.2	ne	4.5
Bioaccumulation	n			4	ne	0.003	4,200	128	ne	0.1	ne
Oregon DEQ -	Clean Fill Criteria			12	840	0.54	240	34	0.11	1.5	0.41
Default heek	und concentration - (-)										
Soil	una concentrations (a)			12	840	0.54	240	34	0.11	15	0.41
					0.10	0.01		U			0.11

All values in milligrams per kilogram (mg/kg) Generic Risk-Based Levels are based on Risk-Based Decision Making for the Remediation of Petroleum-Contaminated Sites, Oregon DEQ, Sept., 2003 (revised June 7, 2012)

>Csat: The soil RBC exceeds the saturation limit of the soil

J: This is an estimated value. The value is below the method reporting limit but above the limit of detection.

>Max: The constituent RBC for this pathway is greater than 100,000 mg/kg.

ne - Not established

NV: This chemical is considered "non-volatile" for purposes of the exposure calculations

- Sample not analyzed

Highlighted cells exceed the indicated screening values **and** background concentrations. (1) "Take" soils were classified for options regarding disposal and re-use during the SFC project based on contaminat concentrations. See report for definitions of soil types.

Concentration exceeds one or more risk-based concentration, ecological screening level or Clean Fill Criteria.

APPENDIX A

Proposed Sample Analysis Tables (from project work plan)

		т	able 1 - Ea	st Mill									
								Me	tals				
	Purpose of Sample	Number of Samples	Diesel/ Heavy oil	PAHs	Ag	As	Ва	Cd	Cr	Hg	Pb	Se	Dioxins
	Human exposure												
"Take" soils (approx. 0-3' bgs)	Lateral delineation and characterization for soil disposal	4 lateral	х	х	-	-	х	х	_	-	х	-	_
	Eco risk (current)												
"Leave" surface (approx. >3' bgs)	Eco risk (future)	1 source + 4 lateral (archived*)	x	х	_	_	x	x	_	_	x	_	_
Vertical delineation near source (EM-1)	Eco risk (future)	1 (archived*)		Depe	ndent	on "le	ave" s	urface	scree	ening r	esults		

* The archived samples will be analyzed for all analytes in the lateral "take" samples that exceed the most conservative

		Та	able 2 - We	st Mill									
								Me	tals				
	Sample Purpose	Number of Samples	Diesel/ Heavy oil	PAHs	Ag	As	Ва	Cd	Cr	Hg	Pb	Se	Dioxins
	Human exposure												
"Take" soils (approx. 0-3' bgs)	Lateral delineation and characterization for soil disposal	5 lateral	х	х	-	_	-	х	_	-	х	_	_
	Eco risk (current)												
"Leave" surface (approx. >3' bgs)	Eco risk (future)	1 source + 4 lateral (archived*)	х	_	х	х	х	х	х	х	х	х	_
Vertical delineation near source	Eco risk (future)	1 (archived*)		Depe	ndent	on "lea	ave" s	urface	scree	ening r	esults		

* The archived samples will be analyzed for all analytes in the lateral "take" samples that exceed the most conservative

		Table	3 - Sawdus	st Burner	-								
							ī	Me	tals				
	Sample Purpose	Number of Samples	Diesel/ Heavy oil	PAHs	Ag	As	Ва	Cd	Cr	Hg	Pb	Se	Dioxins
	General screening for worker exposure, eco risk and soil disposal	2 (source)	х	Х	х	х	х	x	x	x	x	х	Х
	Background determination for dioxins	2 (archived*)	_	-	_	_	_	-	-	-	-	-	x
"Take" soils (approx. 0-3' bgs)	Human Exposure			Dep	bender	nt on "	take" :	soils s	creeni	ng res	sults		
	Lateral delineation and characterization for soil disposal	4 lateral (archived*)		Dep	bender	nt on "	take" :	soils s	creeni	ng res	sults		
	Eco risk (current)			Dep	bender	nt on "	take" :	soils s	creeni	ng res	sults		
"Leave" surface (approx. >3' bgs) Eco risk (future) 2 source (archived*) 4 lateral (archived*) Dependent on source and lateral "take" soils s									ls scre	ening	result	S	
Vertical delineation near source	Eco risk (future)	neation Eco risk (future) 2 (archived*) Dependent on source "leave" soils screening results											

* The archived samples will be analyzed for all analytes in screening samples that exceed the most conservative

		Та	ble 4 - Eas	t Parcels	5								
							-	Me	tals				
	Sample Purpose	Number of Samples	Diesel/ Heavy oil	PAHs	Ag	As	Ba	Cd	Cr	Hg	Pb	Se	Dioxins
"Take" soils (approx. 0-3' bgs)	General screening for worker exposure, eco risk and soil disposal Human exposure Lateral delineation and characterization for soil disposal	3	×		x	x	×	x	x	x	×	×	
"Leave" surface (approx. >3' bgs)	Eco risk	3 (archived*)		Dep	bendei	nt on "	take" :	soils s	creen	ing res	sults		

* The archived samples will be analyzed for all analytes in screening samples that exceed the most conservative

		Table	e 5 - Inlet P	ond Sed	iment	t							
								Me	tals				
	Sample Purpose	Number of Samples	Diesel/ Heavy oil	PAHs	Ag	As	Ва	Cd	Cr	Hg	Pb	Se	Dioxins
Lateral delineation	Eco risk	2 lateral	_	х	-	-	-	-	-	-	х	-	_

APPENDIX B

Exploratory Test Pit Logs

A	Anderson Geological			EXPLORATORY TEST PIT LOG						
G	GEOLO	GICAL		PIT TP-1	PROJECT #1420.01		SHEET 1 OF 1			
Proj Geo Exca	ect Nar logist: I avation	me: Sadri Prop Erik Anderson Method: Trac	berty, ⁻ ck Hoe	Fillamook, OR	Start/End Date: Sept. 3, 2014 Pit Depth: 7'					
DEPTH (FT.)	PID	SAMPLE#	LITH LOG		SOIL DESCRIPTION					
1		TP1-0-1T	×.					1		
2			_					2		
3			_					3		
4				LEAVE surface	abundant root matter, minor w	ood chip	., damp, os.	4		
5				(approx.)	1'-6': Wood chips 1"-4" long. W	Vater see	eps below 3'.	5		
6	6				6'-7': Med. gray SILT (bay muc	d), wet.		6		
7		TP1-6L		-	Static water level: 2' bgs.			7		
8								8		
9								9		
10			-					10		
11								11		
12			-					12		
13			-					13		
14			-					14		
15			-					15		
16								16		
17								17		
18			-					18		
19								19		
20								20		
21								21		
22			-					22		
23			-					23		
24								24		
25			ļ	1				25		

A	Anderson Geological			EXPLORATORY TEST PIT LOG					
G	GEOLO	GICAL		PIT TP-2	PROJECT #1420.01	SHEET 1 OF 1			
Proj Geo Exca	ect Nai logist: l avation	me: Sadri Prop Erik Anderson Method: Trac	berty, ⊺ k Hoe	Tillamook, OR	Start/End Date: Sept. 3, 2014 Pit Depth: 5.5'				
DEPTH (FT.)	PID	SAMPLE#	LITH LOG	l. }	SOIL DESCRIPTION				
1		Í					1		
2		TP2-0-4T <			0'-2': Med. brown clayey silt FILL, loose, damp, abundant root matter.				
3	LEAVE suri			LEAVE surface	2'-4': Med. gray silty sandy FILL w/ approx. 50% Wood chips and sawdust. Water seeps at 4'				
5				(approx.)	4'-5': Wood chips, wet. Top of steel 55-gall	on drum.	5		
6	6				5'-5.5': Matted grasses and roots.		6		
7	7				5		7		
8	8						8		
9	9						9		
10	10					10			
11							11		
12							12		
13							13		
14							14		
15							15		
16							16		
17							17		
18							18		
19							19		
20							20		
21							21		
22							22		
23							23		
24							24		
25							25		
1									

A	ANDERS	SON		·		EXPLORATORY TEST PIT L	CG			
G	GEOLO	GICAL		PIT	TP-3	PROJECT #1420.01	SHEET 1 OF 1			
Proj Geo Exca	ject Nar logist: I avation	me: Sadri Prop Erik Anderson Method: Trac	berty, ⊺ k Hoe	Tillamoo	ık, OR	Start/End Date: Sept. 3, 2014 Pit Depth: 7'				
DEPTH (FT.)	PID	SAMPLE#	LITH LOG			SOIL DESCRIPTION				
(FT.) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22		SAMPLE#			LEAVE surface (approx.)	O'-2.5': Med light brown silt sandy abundant tree roots. 2.5'-7': Med. gray clayey silt FILL, da chips. Coiled wire at 6.5'.	FILL, loose, dry, amp, minor wood	(FT.) (FT.) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22		
23 24 25								23 24 25		

A	Anderson Geological				EXPLORATORY TEST PI	IT LC)G	
G	GEOLO	GICAL		PIT TP-4	PROJECT #1420.01		SHEET 1 OF 1	
Proj Geo Exca	ect Nar logist: I avation	me: Sadri Prop Erik Anderson Method: Trac	oerty, ⁻ ck Hoe	Fillamook, OR	Start/End Date: Sept. 3, 2014 Pit Depth: 5'			
DEPTH (FT.)	PID	SAMPLE#	LITH LOG		SOIL DESCRIPTION			
1		Í						1
2		TP4-0-3T <			0'-2.5': Med. brown silty sandy FILL, loose, damp.			
3				LEAVE surface	2.5'-5': Med dark clayey silty FILL, damp. Roots			3
4					and minor sawdust from 3'-5'.			
5								5
6								6
7			-					7
8			_					8
9								9
10								10
11								11
12								12
13								13
14			-					14
15								15
16								16
17			-					17
18								18
19								19
20								20
21			-					21
22			-					22
23			-					23
24			-					24
25								25

A	ANDERS	SON				EXPLORATORY TEST	PIT LC)G		
G	GEOLO	GICAL		PIT TP-5	5	PROJECT #1420.01		SHEET 1 OF 1		
Proj Geo Exca	ect Nar logist: I avation	me: Sadri Prop Erik Anderson Method: Trac	berty, ⁻ ck Hoe	Tillamook, OR		Start/End Date: Sept. 4, 2014 Pit Depth: 5'				
DEPTH (FT.)	PID	SAMPLE#	LITH LOG	l. 3		SOIL DESCRIPTION				
1									1	
2						0'-2.5': Timbers and lumer in	n silty sa	andy matrix, loose.	2	
3				LEAVE surfact (approx.)	<u>ce</u>	2.5'- 3.5': Dark gray/black w wet at 3.5'. Dark oily appear	vood chij rance ar	os(toothpick size), nd odor.	3	
5		+ TP5-3.5L←				3.5' - 5': Dark gray clayey si	lt, damp	, soft, abundant	5	
6	TP5-5V					line roots.			6	
7									7	
8			-						8	
10									10	
11			-						11	
12			-						12	
13									13	
14									14	
16									16	
17			-						17	
18			-						18	
19 20									19 20	
21									21	
22									22	
23									23	
24									24	
25	1	1	Į	<u> </u>					25	

PIT TP-6 PROJECT #1420.01 SHEET 1 OF 1 Project Name: Sadn Property, Tillamook, OR Geologit: Erik Anderson Start/End Date: Sept. 3, 2014 Pri Depth: 6 Security Image: Sadn Property, Tillamook, OR Geologit: Erik Anderson Start/End Date: Sept. 3, 2014 Pri Depth: 6 Security Image: Sadn Property, Tillamook, OR Geologit: Erik Anderson Soll DESCRIPTION Image: Solid Description Image: Sadn Property, Tillamook, OR Geologit: Erik Anderson Or 0.5: Med. brown sithy sandy FILL. Image: Solid Description Image: Solid Descripti	A	Anderson Geological				EXPLORATORY TEST PIT	LOG		
Project Name: Sadi Property, Tillamook, OR Geologiet: Erik Anderson Start/End Date: Sept. 3, 2014 Start/End Date: Sept. 3, 2014 Pri Deptin 6 Start/End Date: Sept. 3, 2014 Start/End Date: Sept. 3, 2014 Start/End Date: Sept. 3, 2014 Start/End Date: Sept. 3, 2014 Start/End Date: Sept. 3, 2014 Start/End Date: Sept. 3, 2014 </td <td>G</td> <td>GEOLOGIC</td> <td>AL</td> <td></td> <td>PIT TP-6</td> <td>PROJECT #1420.01</td> <td>SHEET 1 OF 1</td> <td></td>	G	GEOLOGIC	AL		PIT TP-6	PROJECT #1420.01	SHEET 1 OF 1		
DBPTN (PT) PID SAMPLE# LTH. LOG SOIL DESCRIPTION DEPTN (PT) 1	Projec Geolo Excav	ct Name: ogist: Erik /ation Me	: Sadri Prope Anderson ethod: Track	rty, T Hoe	⁻illamook, OR	Start/End Date: Sept. 3, 2014 Pit Depth: 6'			
1 TP6-0-27 1 1 2 1 2 3 2 3 2 3 2 3 3 3 3 3 3 3 3 3 3 <	DEPTH (FT.)	PID S	AMPLE#	_ITH. LOG		SOIL DESCRIPTION			
22	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25		P6-0-2T		LEAVE surface (approx.)	0'-0.5': Med. brown silty sandy FILL. 0.5'-2': Med. brown sandy gravel FILL. rounded, 10-30 mm. Sand is fine-coars No oily odor or film. 2'- 6': Dark gray/black wood chips(vene Some silty sand at 5' (sample #TP6-5V used oil filters. Light oily film on standing water and so (2 feet bgs).	Gravel is se, poorly sorted. eer chips) and sawdust. /). Numerous (15-20) oils below water table	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	

A	Anderson Geological			EXPLORATORY TEST PIT LOG				
G	GEOLO	GICAL		PIT TP-7	PROJECT #1420.01		SHEET 1 OF 1	
Proj Geo Exca	ect Nai logist: l avation	me: Sadri Prop Erik Anderson Method: Trac	berty, ⁻ k Hoe	Fillamook, OR	Start/End Date: Sept. 3, 2014 Pit Depth: 6'			
DEPTH (FT.)	PID	SAMPLE#	LITH LOG		SOIL DESCRIPTION			
1		Í						1
2		TP7-0-3T <						2
3				LEAVE surface	0'-6': Sawdust w/ clay and silt some large logs.	with min	or gravel and	3
4		TP7-3L						4
5								5
6								6
7								7
8								8
9								9
10								10
11								11
12								12
13								13
14								14
15								15
16								16
17								17
18								18
19								19
20								20
21								21
22								22
23								23
24								24
25								25

Difference PIT TP-8 PROJECT #1420.01 SHEET 1 OF 1 Project Name: Sadi Property, Tillamook, OR Geologist: Enk Addresson Exacation Method: Track Hoe StartEnd Date: Sept. 3, 2014 Pit Depth: 3.5' StartEnd Date: Sept. 3, 2014 Pit Depth: 3.5' 1 TP6-02.51T IITH SOIL DESCRIPTION 0err, PTJ 2 TP6-02.51T IITH SOIL DESCRIPTION 0err, PTJ 3 TP6-02.51T IITH UCVC suffer 0'-2': Sandy gravelly FILL with 30% sawdust, damp, loose. 3 TP8-02.51T IITH UCVC suffer 0'-2': Sandy gravelly FILL. Sand is med-coarse (poorly sorted), grave lis rounded (10-30 mm). Wet at 3' bgs. 5 4 IITH IITH IITH IITH IITH 10 IITH IITH IITH IITH IITH 11 IITH IITH IITH IITH IITH 10 IITH IITH IITH IITH IITH 12 IITH IITH IITH IITH IITH 13 IITH IITH IITH IITH IITH <t< th=""><th>A</th><th colspan="2">A ANDERSON G GEOLOGICAL</th><th></th><th></th><th>EXPLORATORY TEST P</th><th>IT LC</th><th>DG</th><th></th></t<>	A	A ANDERSON G GEOLOGICAL				EXPLORATORY TEST P	IT LC	DG		
Project Name: Sadi Property, Tilamook, OR Geologist: Erik Anderson StartEnd Date: Sept. 3, 2014 Property Pr	G	GEOLO	GICAL		PIT TP-8	PROJECT #1420.01		SHEET 1 OF 1		
Description PID SAMPLE# LTH. LOG SOIL DESCRIPTION Description 1 <	Proj Geo Exca	ject Nai ologist: I avation	me: Sadri Prop Erik Anderson Method: Trac	berty, ⁻	Fillamook, OR	Start/End Date: Sept. 3, 2014 Pit Depth: 3.5'				
1 TP8-0-2.5T 3 TP8-2.5L 4	DEPTH (FT.)	PID	SAMPLE#	LITH LOG		SOIL DESCRIPTION				
20 20 20 21 21 22 21 22 23 23 23 23 24 24 24 24 25 1 1 25	LET.) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19		SAMPLE#		LEAVE surface (approx.)	O'-2': Sandy gravelly FILL with 30% 2'-3'.5: Med. gray sandy gravelly FI (poorly sorted), gravel is rounded (Static water level: 3' bgs.	5 sawo ILL. Si 10-30	dust, damp, loose. and is med-coarse mm). Wet at 3' bgs.	DEPTH (FT.) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	
22	20								20	
23	22								22	
24	23								23	
25 25	24								24	
	25								25	

Α	ANDERS	SON			EXPLORATORY TEST PI	T LOG			
G	GEOLO	GICAL	ľ	PIT TP-9	PROJECT #1420.01	SHEET 1 OF 1			
Proj Geo Exca	ect Nar logist: l avation	me: Sadri Prop Erik Anderson Method: Tracl	erty, ⊺ k Hoe	Fillamook, OR	Start/End Date: Sept. 3, 2014 Pit Depth: 3'	·			
DEPTH (FT.)	PID	SAMPLE#	LITH LOG		SOIL DESCRIPTION				
1		TP9-0-2 5T					1		
2				LEAVE surface	e 0'-0.3: Med. brown silty sandy FILL (topsoil).		2		
4		-TP9-2.5L			0.3'-1.0': Med. brown silty sandy gra sawdust, Abundant plant roots.	velly FILL w/ 10%	4		
5					1.0'-3.0': Med. brown sandy gravel F	ILL. Sand med-coarse,	5		
6	5 7				Static water level: 2.5' bgs.	mm. wet.	6		
7							8		
9	9					9			
10							10		
11							11		
13							13		
14							14		
15							15		
16 17							17		
18							18		
19							19		
20							20		
22							22		
23							23		
24							24		
25	1	<u> </u>		ļ			25		

A	Anderson Geological			EXPLORATORY TEST PIT LOG						
C	GEOLO	GICAL		PIT TP-10	PROJECT #1420.01		SHEET 1 OF 1			
Pro Geo Exc	iject Nai plogist: avation	me: Sadri Prop Erik Anderson Method: Trac	berty, ⁻	Tillamook, OR	Start/End Date: Sept. 3, 2014 Pit Depth: 7'			_		
DEPTH (FT.)	PID	SAMPLE#	LITH LOG		SOIL DESCRIPTION					
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25				LEAVE surface (approx.)	0'-6: Sawdust and wood chips 6'-7': Med. brown silty sandy g sawdust, Abundant plant roots	w/ minor gravelly F S.	silty soil, dry, loose. ILL w/ 10%	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25		

Α	Anderson Geological		EXPLORATORY TEST PIT LOG						
G	GEOLO	GICAL		PIT TP-11	PROJECT #1420.01	SHEET 1 OF 1			
Proj Geo Exc:	ect Nar logist: l avation	me: Sadri Prop Erik Anderson Method: Trac	berty, ⊺ k Hoe	Fillamook, OR	Start/End Date: Sept. 3, 2014 Pit Depth: 7'				
DEPTH (FT.)	PID	SAMPLE#	LITH LOG		SOIL DESCRIPTION				
1									
2		TP11-0-3T<			0'-0.5': Med. brown silty sandy FILL (topsoil)				
3		TP11-3L		LEAVE surface (approx.)	0.5'-4': Med. gray-brown sandy gravel rounded, 10-50 mm., loose, wet at 3'.	FILL, Gravel is	3		
4				<u>6</u>			4		
5							5		
6	6						6		
7							7		
8							8		
9							9		
10							10		
11							11		
12							12		
13							13		
14							14		
15							15		
16							16		
17			·				17		
18							18		
19							19		
20							20		
21							21		
22			ł						
23							23		
24							24		
25	1	I		Į			25		

A	ANDERS	60N		-	EXPLORATORY TEST PIT LO	DG			
G	GEOLO	GICAL		PIT TP-12	PROJECT #1420.01	SHEET 1 OF 1			
Proj Geo Exca	iect Nai logist: l avation	me: Sadri Prop Erik Anderson Method: Trac	berty, ⁻ k Hoe	Fillamook, OR	Start/End Date: Sept. 3, 2014 Pit Depth: 6'				
DEPTH (FT.)	PID	SAMPLE#	LITH LOG		SOIL DESCRIPTION				
1		TP12-0-2T {					1		
3					0'-2': Med. brown silty sandy FILL	w/ 20% sawdust	3		
4	LEAVE surfac				2'-5': Med. gray sawdust/wood chi	p FILL.	4		
5				(approx.)	5'-6': Med. gray clay SILT, moist/w minor flecks of charcoal.	vet with	5		
6		TP12-5L		- 			6		
7							7		
8							8		
9	-						9		
10			-				10		
11							11		
12			-				12		
13							13		
14							14		
15							15		
16							16		
17							17		
18							18		
19							19		
20							20		
21							21		
22							22		
23							23		
24							24		
25							25		

Anderson					EXPLORATORY TEST PIT LOG				
G	GEOLO	GICAL	Ī	PIT TP-13	PROJECT #1420.01	SHEET 1 OF 1			
Proj Geo Exca	ject Nar logist: I avation	ne: Sadri Prope Erik Anderson Method: Track	erty, T < Hoe	Fillamook, OR	Start/End Date: Sept. 4, 2014 Pit Depth: 4'				
DEPTH (FT.)	^H PID SAMPLE# LITH. LOG				SOIL DESCRIPTION				
1		TP13-0-2T		LEAVE surface			1		
3		TP13-2L		(approx.)	0'-1': Med dark gray silty F abundant tree roots.	ILL, dry, loose, crumbly w/	3		
5					1'-2.5': Med dark gray clay sawdust, damp, loose w/ sor (50-100mm long).	ey silty FILL w/ abundant me wood fragments	5		
7					2.5'-3.5': Dark gray sandy gr charred wood.	avelly FILL w/ abundant	7 8		
9					3.5'-4': Med dark gray silt (wood fragments (tree limbs)	(bay mud) w/ abundant	9 10		
11							11		
13							13		
14 15							14		
16 17							16 17		
18 19							18 19		
20 21							20 21		
22 23							22 23		
24							24		

Anderson				EXPLORATORY TEST PIT LOG					
G	GEOLO	GICAL		PIT TP-14	PROJECT #1420.01	SHEET 1 OF 1			
Proj Geo Exca	ect Nar logist: I avation	me: Sadri Prop Erik Anderson Method: Trac	berty, ⁻ k Hoe	Fillamook, OR	Start/End Date: Sept. 4, 2014 Pit Depth: 4'				
DEPTH (FT.)	TH PID SAMPLE# LITH. LOG				SOIL DESCRIPTION				
1	1	P14-0-2.5T			0'-1.5': Med. grav silty Ell L. dry Joose or	umbly w/	1		
3		L TP14-2.5L		LEAVE surface (approx.)	abundant tree roots.	_, ury, ioose, crumbly w/			
4				- - - -	1.5'-3': Dark gray clayey silty FILL w/ abu w/ some larger branches with blue colora	ndant sawdust (50%), tion. Damp.	4		
5					3'-4': Med dark gray clayey SILT (bay m	ud), damp, stiff.	5		
6							6		
8							8		
9							9		
10							10		
11							11		
12							12		
14							14		
15							15		
16							16		
17							17		
18							18 19		
20							20		
21							21		
22							22		
23							23		
24							24		
	1		!	Į					

Anderson				EXPLORATORY TEST PIT LOG						
G	GEOLO	GICAL		PIT TP-15 PROJECT #1420.01 SHEET 1 OF 1						
Proj Geo Exca	ect Nar logist: I avation	me: Sadri Prop Erik Anderson Method: Trac	berty, ⁻ k Hoe	Fillamook, OR	Start/End Date: Sept. 4, 2014 Pit Depth: 5.5'					
DEPTH (FT.)	PTH T.) PID SAMPLE# LITH. LOG				SOIL DESCRIPTION					
1							1			
2							2			
3				LEAVE surface (approx.)	-		3			
4		TP15-3.5L			'-1': Dark gray/black Ell I, dry loose with ah	undant tree roots	4			
5				a a	nd brick fragments.		5			
6		TP15-5V		1 fr	'-2.5': Dark gray/black sandy FILL w/ minor b	pricks and wood	6			
7					$E' \in E'$: Mod grov dovov SILT (bov mud) do	ump. coft with minor	7			
8				SI	mall roots. Larger roots at 5'.		8			
9							9			
10							10			
11							11			
12							12			
13							13			
14							14			
15							15			
16							16			
17							17			
18			-				18			
19							19			
20							20			
21							21			
22							22			
23							23			
24							24			
25							25			

ANDERSON				EXPLORATORY TEST PIT LOG						
G	GEOLO	GICAL		PIT TP-16	SHEET 1 OF 1					
Proj Geo Exc:	ect Nai logist: l avation	me: Sadri Prop Erik Anderson Method: Trac	berty, ⁻ k Hoe	Fillamook, OR	Start/End Date: Sept. 4, 2014 Pit Depth: 3'		-			
DEPTH (FT.)	PID SAMPLE# LITH. LOG				SOIL DESCRIPTION					
1	1	P16-0-2.5T {					1			
3		_ TP16-2.5L		LEAVE surface (approx.)	_ 0'-1': Med dark gray silty FILL, dr abundant tree roots.	y, loose, crumbly w/	3			
4					1'-2.5': Med dark gray clayey silty sawdust and wood fragments. Larg metal at 2'. Angle iron and nails at	r FILL w/ abundant je piece of sheet 1.5'-2'.	4 5			
6 7					2.5'-3': Med dark gray SILT (bay r wood fragments.	nud), damp, soft with	6 7			
8							8			
9							9			
11							11			
12							12			
14							14			
15							15			
16							17			
18			-				18			
19 20							19 20			
21							21			
22							22 23			
24							24			
25							25			

Anderson			EXPLORATORY TEST PIT LOG					
G	GEOLO	GICAL		PIT	TP-17	PROJECT #1420.01	SHEET 1 OF 1	
Proj Geo Exca	Project Name: Sadri Property, Tillamook, OR Geologist: Erik Anderson Excavation Method: Track Hoe					Start/End Date: Sept. 4, 2014 Pit Depth: 4'	-	
DEPTH (FT.)	PID	SAMPLE#	LITH LOG			SOIL DESCRIPTION		DEPTH (FT.)
1		TP17-0-3T						1
2 3					LEAVE surface	0'-1': Dark gray/black silty FILL, dry, loose, crumbly w/ tree roots and thin layers of hard plaster-like material		
4		TP17-3L		- - - -	(approx.)	(approx. 1" thick). 1'-2': Dark gray/black silty FILL w/ s	sawdust	4
5						and tree branches (1" to 1.5" dia.).		5
6						2'-3': Dark gray/black clayey silty fil	l w/ sawdust	6
7						3'-4': Med. gray clay SILT (bay muc fragments and branches.	d), damp, with wood	7 8
9								9
10								10
11								11
12								12
13								13
14								14
15								15
16								16
17								17
18								18
19								19
20								20
21								21
22								22
23								23
24								24
25								25

Project Name: Sadii Property, Tillamook, OR PROJECT #1420.01 SHEET 1 OF 1 Project Name: Sadii Property, Tillamook, OR Start/End Date: Sept. 4, 2014 Pil Depth: 6.5" Berry PID SAMPLE# LITH Start/End Date: Sept. 4, 2014 2 Image: Sept. 4, 2014 Pil Depth: 6.5" SOIL DESCRIPTION 1 Image: Sept. 4, 2014 Pil Depth: 6.5" O'-5": Med. brown, soft silty fine SAND. 3 TP18-0-6T Image: Sept. 4, 2014 O'-5": Med. brown, soft silty fine SAND. 5 Image: Sept. 4, 2014 O'-5": Med. brown, soft silty fine SAND. 5'-6.5": Med. gray clay SILT (bay mud), soft. 6 Image: Sept. 4, 2014 Image: Sept. 4, 2014 Sept. 4, 2014 6 Image: Sept. 4, 2014 Image: Sept. 4, 2014 Sept. 4, 2014 7 TP18-0-6T Image: Sept. 4, 2014 Sept. 4, 3014 8 Image: Sept. 4, 2014 Image: Sept. 4, 2014 Sept. 4, 2014 9 Image: Sept. 4, 2014 Image: Sept. 4, 2014 Sept. 4, 2014 10 Image: Sept. 4, 2014 Image: Sept. 4, 2014 Sept. 4, 2014 11 Image: Sept. 4	Anderson			EXPLORATORY TEST PIT LOG					
Project Name: Sadri Property, Tillamook, OR Geologist: Erik Anderson Start/End Date: Sept. 4, 2014 Pit Depth: 6.5" Excavation Method: Track Hee UTH. LOG SOIL DESCRIPTION 1 0 0'-5': Med. brown, soft silty fine SAND. 3 TP18-0-6T 0'-5': Med. brown, soft silty fine SAND. 4 1 0'-5': Med. brown, soft silty fine SAND. 5 1 0'-5': Med. gray clay SILT (bay mud), soft. 8 1 0'-10 9 1 1 10 1 1 11 1 1 12 1 1 13 1 1 14 1 1 15 1 1 16 1 1 19 1 1	G	DLOGICAL	PIT TP-18	PROJECT #1420.01	SHEET 1 OF	1			
DEFTN (FT) PID SAMPLE# LITH. LOG SOIL DESCRIPTION 1	Project I Geologis Excavati	Name: Sadri Proper st: Erik Anderson tion Method: Track	ty, Tillamook, OR Hoe	Start/End Date: Sept. 4, 2014 Pit Depth: 6.5'					
1 0'-5': Med. brown, soft silty fine SAND. 3 TP18-0-6T 4 0'-5': Med. gray clay SILT (bay mud), soft. 6 0'-5': Med. gray clay SILT (bay mud), soft. 7 TP18-6L- 8 0'-5': Med. gray clay SILT (bay mud), soft. 8 0'-5': Med. gray clay SILT (bay mud), soft. 9 0'-0' 10 0'-0' 11 0'-0' 12 0'-0' 13 0'-0' 14 0'-0' 18 0'-0' 19 0'-0' 20 0'-0'	OEPTH (FT.) PI	ID SAMPLE# L	ITH. OG	SOIL DESCRIPTION					
2 0'-5': Med. brown, soft silty fine SAND. 3 TP18-0-6T 4 - 5 - 6 - 7 TP18-6L 8 - 9 - 10 - 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 20 -	1					1			
3 TP18-0-6T 4 - 5 - 6 - 7 TP18-0L 8 - 9 - 10 - 11 - 12 - 13 - 14 - 17 - 18 - 19 - 20 -	2			0'-5': Med. brown, soft silty fin	e SAND.	2			
5 Image: Constraint of the second s	3	TP18-0-6T 〈		5'-6.5': Med. gray clay SILT (b	bay mud), soft.	3			
6 LEAVE surface (approx.) 8	5					5			
7 111000 8	6	TP18-61	LEAVE surface (approx.)	_		6			
9	7					7			
10 11 12 13 14 15 16 17 18 19	9					9			
11	10					10			
12	11					11			
14 15 16 17 18 19 20	12					12			
15	14					14			
16 17 18 19 20	15					15			
18	16					16			
19 20	18					18			
	19					19			
	20					20			
	21					21			
23	23					23			
24	24					24			
	25					25			
A	Anderson				EXPLORATORY TEST PIT LOG				
---------------------	---------------------------------	---	------------------	---------------	---	---------------------------------------	----------------	--	--
G	GEOLO	GICAL		PIT TP-19	PROJECT #1420.01	SHEET 1 OF 1			
Proj Geo Exca	ect Nar logist: I avation	me: Sadri Prop Erik Anderson Method: Trac	erty, ⊺ k Hoe	Tillamook, OR	Start/End Date: Sept. 4, 2014 Pit Depth: 7.5'				
DEPTH (FT.)	PID	SAMPLE#	LITH LOG	l. ;	SOIL DESCRIPTION	I	DEPTH (FT.)		
1		(1		
2							2		
3		TP19-0-7T			0'-3.5': Med. brown, silty fine abundant roots and minor c (bricks, concrete pieces).	e sandy FILL w/ onstruction debris	3		
4 5					3.5'-6': Med. gray medcoa	rse sand and gravel FILL,	4 5		
6					6'-7 5': Med. grav silty clay ((hav mud) stiff damp	6		
7					No water seeps or standing	water.	7		
8		TP19-7L-	~ •-	(approx.)	_		8		
9							9		
10							10		
11							11		
12							12		
12							13		
14							14		
14							15		
15							15		
16							10		
17							17		
18							18		
19							19		
20							20		
21							21		
22							22		
23							23		
24							24		
25							25		

ANDERSON					EXPLORATORY TEST PIT LC)G	
G	GEOLO	GICAL		PIT TP-20	PROJECT #1420.01	SHEET 1 OF 1	
Proj Geo Exca	ect Nar logist: I avation	me: Sadri Prop Erik Anderson Method: Trac	berty, ⊺ ck Hoe	Fillamook, OR	Start/End Date: Sept. 4, 2014 Pit Depth: 8'		-
DEPTH (FT.)	PID	SAMPLE#	LITH LOG		SOIL DESCRIPTION		DEPTH (FT.)
1							1
2							2
3			$ \wedge$		0'-4': Pro-ovicting holo		3
4		ļ,					4
5					4'-8': Dark gray/black silty sandy FILL w/ cobbles and wood fragments, concrete piece	es.	5
6		TP20-4-8T			8': Equipment refusal on hard, flat surface (c	oncrete).	6
7							7
8		Ĺ		2 1 1 2 2 2 2 2			8
9							9
10			-	LEAVE surface	_		10
11			-	(approv.)			11
12							12
13							13
14							14
15			-				15
16							16
17							17
18			-				18
19							19
20			-				20
21							21
22			ļ				22
23							23
24			-				24
25							25

A	Anderson				EXPLORATORY TEST PIT LO	DG	
G	GEOLO	GICAL		PIT TP-27	PROJECT #1420.01	SHEET 1 OF 1	
Proj Geo Exca	ect Na logist: avation	me: Sadri Prop Erik Anderson Method: Trac	berty, ⁻ k Hoe	Fillamook, OR	Start/End Date: May 29, 2014 Pit Depth: 6.2'		
DEPTH (FT.)	PID	SAMPLE#	LITH LOG		SOIL DESCRIPTION		DEPTH (FT.)
1		TP27-1					1
2		TP27-2.5~			0'-20": Med. brown silty topsoil with fine	e roots.	2
3					20"-3': Mixed silty FILL and woody deb	is (wood chips)	3
4		TP27-5 —		LEAVE surface (approx.)	3'-5': Wood chips (no soil), Water seeps	5.	4 5
6		TP27-6	-		5'-6': Wed. gray silty FILL w/ abundant (sawdust). Water seeps.	fine woody debris	6
7					6'-6.2': Med. gray SILT (bay mud?) with	sparse fine roots.	8
9							9
10							10
11							11
12			-				12
13							13
14							14
15			-				15
16							16
17							17
18							18
19							20
20							21
22							22
23							23
24							24
25							25

A	ANDERS	SON		•	EXPLORATORY TEST PIT LOG	3	
G	GEOLO	GICAL		PIT TP-28	PROJECT #1420.01	SHEET 1 OF 1	
Proj Geo Exca	ect Nar logist: I avation	me: Sadri Prop Erik Anderson Method: Trac	perty, ⊺ ck Hoe	Fillamook, OR	Start/End Date: May 29, 2014 Pit Depth: 6'		
DEPTH (FT.)	PID	SAMPLE#	LITH LOG		SOIL DESCRIPTION		DEPTH (FT.)
DEPTH (FT.) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23		SAMPLE# SAMPLE SAMPLE SAMPLE		LEAVE surface (approx.)	 O'-6': Coarse wood chips and short piece anthropogenic material (glass jar, light & Water seeps from 1.5'-6'. No samples collected. 	es of lumber. Minor bulbs).	DEPTH (FT.) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
24 _25							24 25
			-				

A	A ANDERSON EXPLORATORY TEST PIT LOG						
G	GEOLO	GICAL		PIT TP-29	PROJECT #1420.01	SHEET 1 OF 1	
Proj Geo Exca	ect Nar logist: I avation	me: Sadri Prop Erik Anderson Method: Trac	berty, ⁻ ck Hoe	īillamook, OR	Start/End Date: May 29, 2014 Pit Depth: 9'		
DEPTH (FT.)	PID	SAMPLE#	LITH LOG		SOIL DESCRIPTION		DEPTH (FT.)
1		TP29-1					1
2		TP29-2.5~					2
3				LEAVE surface	_		3
4				(approx.)			4
5					0'-1': Med. brown silty topsoil with minor fine	sawdust and roots.	5
6					1'-2.5': Mixed brown silty FILL with wood chi becoming more abundant with depth.	ps and sawdust,	6
7					2 5'-7'. Wood chips, sawdust and long fibrou	is pieces of wood	7
8					Z'-8 5': Med - It gray clay SILT with woody	debris and	8
9			· - · - · -		spruce needles.		9
10					8.5'-9": Med It. gray clay SILT (bay mud).		10
11					No water seeps or standing water in pit.		11
12					(sawdust).		12
13							13
14							14
15							15
16							16
17							17
18							18
19							19
20							20
21							21
22			ļ				22
23							23
24							24
25							25

A	Anderson EXPLORATORY TEST PIT LOG						
G	GEOLO	GICAL		PIT TP-30	PROJECT #1420.01	SHEET 1 OF 1	
Proj Geo Exca	ect Nar logist: I avation	me: Sadri Prop Erik Anderson Method: Trac	berty, ⁻ k Hoe	Fillamook, OR	Start/End Date: May 29, 2014 Pit Depth: 7'		
DEPTH (FT.)	PID	SAMPLE#	LITH LOG		SOIL DESCRIPTION		DEPTH (FT.)
1		TP30-1					1
2					0'-1.5': Med. brown clayey silty to	opsoil, loose, damp.	2
3		TP30-3-		∑ 7 7	1.5'-2.5': Light orange-brown loo	se, crumbly clayey FILL.	3
4		TP30-4		∇ 7 ∇			4
5			$\nabla \nabla \nabla$		2.5-5: Dark gray/black slity FILL W/ abundant fine woody material and possible fine ash. Abundant anthropogenic material (plastic motal scraps, fabric, shoos)		5
6		TP30-6	7•	LEAVE surface (approx.)	- El C El Mad brown alavay El L		6
7					fragments.	loose w/ sparse sinsione	7
8					6.5'-7': Med It. gray clay SILT ((bay mud). Minor water	8
9					seeps at 0.5.		10
11							11
12							12
13							13
14							14
15							15
16							16
17							17
18							18
19							19
20							20
21							21
22							22
23							23
24							24
25	1	I	ļ	ļ			25

APPENDIX C

Laboratory Reports and Sample Chain of Custody

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Friday, October 17, 2014

Erik Anderson Anderson Geological PO Box 649 Wilsonville, OR 97070

RE: Sadri Property / 1420.01

Enclosed are the results of analyses for work order <u>A4I0129</u>, which was received by the laboratory on 9/5/2014 at 9:48:00AM.

Thank you for using Apex Labs. We appreciate your business and strive to provide the highest quality services to the environmental industry.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: <u>dthomas@apex-labs.com</u>, or by phone at 503-718-2323.

Apex Laboratories

ſ

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anderson Geological PO Box 649 Wilsonville, OR 97070	Proje Projec	Project: Sadri Prop ect Number: 1420.01 et Manager: Erik Anders	son	Reported: 10/17/14 10:55				
	ANALYTIC	AL REPORT FOR	SAMPLES					
SAMPLE INFORMATION								
Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received				
TP1-0-1T	A4I0129-01	Soil	09/03/14 08:55	09/05/14 09:48				
TP2-0-4T	A4I0129-03	Soil	09/03/14 09:38	09/05/14 09:48				
TP3-0-5T	A4I0129-04	Soil	09/03/14 10:06	09/05/14 09:48				
	410100.05	G 1	00/02/14 10 21	00/05/14/00/40				

	11110129 01	5011	09/05/11/00:55	0)/00/11/0).10
TP2-0-4T	A4I0129-03	Soil	09/03/14 09:38	09/05/14 09:48
TP3-0-5T	A4I0129-04	Soil	09/03/14 10:06	09/05/14 09:48
TP3-5L	A4I0129-05	Soil	09/03/14 10:21	09/05/14 09:48
TP4-0-3T	A4I0129-06	Soil	09/03/14 10:40	09/05/14 09:48
TP4-3L	A4I0129-07	Soil	09/03/14 10:44	09/05/14 09:48
ТР6-0-2Т	A4I0129-08	Soil	09/03/14 11:40	09/05/14 09:48
TP6-5V	A4I0129-09	Soil	09/03/14 11:50	09/05/14 09:48
ТР7-0-3Т	A4I0129-10	Soil	09/03/14 14:37	09/05/14 09:48
TP7-3L	A4I0129-11	Soil	09/03/14 14:59	09/05/14 09:48
TP8-0-2.5T	A4I0129-12	Soil	09/03/14 15:38	09/05/14 09:48
TP8-2.5L	A4I0129-13	Soil	09/03/14 15:42	09/05/14 09:48
TP10-6L	A4I0129-16	Soil	09/03/14 15:24	09/05/14 09:48
TP11-0-3T	A4I0129-17	Soil	09/03/14 14:06	09/05/14 09:48
TP12-0-2T	A4I0129-19	Soil	09/03/14 14:27	09/05/14 09:48
TP12-4L	A4I0129-20	Soil	09/03/14 14:36	09/05/14 09:48
TP5-3.5L	A4I0129-21	Soil	09/04/14 15:00	09/05/14 09:48
TP13-0-2T	A4I0129-23	Soil	09/04/14 08:53	09/05/14 09:48
TP14-0-2.5T	A4I0129-25	Soil	09/04/14 14:13	09/05/14 09:48
TP14-2.5L	A4I0129-26	Soil	09/04/14 14:20	09/05/14 09:48
TP15-3.5L	A4I0129-27	Soil	09/04/14 11:33	09/05/14 09:48
TP15-5V	A4I0129-28	Soil	09/04/14 11:46	09/05/14 09:48
TP16-0-2.5T	A4I0129-29	Soil	09/04/14 09:36	09/05/14 09:48
TP16-2.5L	A4I0129-30	Soil	09/04/14 09:44	09/05/14 09:48
TP17-0-3T	A4I0129-31	Soil	09/04/14 12:35	09/05/14 09:48
TP17-3L	A4I0129-32	Soil	09/04/14 12:41	09/05/14 09:48
TP18-0-6T	A4I0129-33	Soil	09/04/14 15:46	09/05/14 09:48
TP18-6L	A4I0129-34	Soil	09/04/14 15:50	09/05/14 09:48
TP19-0-7T	A4I0129-35	Soil	09/04/14 16:35	09/05/14 09:48
TP19-7L	A4I0129-36	Soil	09/04/14 16:27	09/05/14 09:48
TP20-4-8T	A4I0129-37	Soil	09/04/14 17:20	09/05/14 09:48
IP-3	A4I0129-40	Soil	09/04/14 10:36	09/05/14 09:48
IP-4	A4I0129-41	Soil	09/04/14 10:47	09/05/14 09:48

Apex Laboratories

au

Anderson Geological			Proje	ct: Sadri Propert	ty			
PO Box 649			Project Numl	per: 1420.01			Repo	rted:
Wilsonville, OR 97070			Project Manag	ger: Erik Anderson			10/17/1	4 10:55
		AN	ALYTICAL	SAMPLE RES	SULTS			
	Diesel and	l Oil Hyd	rocarbons by	NWTPH-Dx wi	ith Silica C	Gel Cleanup		
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
TP1-0-1T (A4I0129-01)			Matrix: Soi	l Ba	atch: 40902	99		
Diesel	ND		29.6	mg/kg dry	1	09/12/14 02:58	NWTPH-Dx/SG	
Oil	ND		59.2	"	"	"	"	
Surrogate: o-Terphenyl (Surr)			Recovery: 95 %	Limits: 50-150 %	"	"	"	
TP2-0-4T (A4I0129-03)			Matrix: Soi	l Ba	atch: 409029	99		
Diesel	ND		33.2	mg/kg dry	1	09/12/14 03:46	NWTPH-Dx/SG	
Oil	ND		66.4	"	"	"	"	
Surrogate: o-Terphenyl (Surr)		L	Recovery: 90 %	Limits: 50-150 %	"	"	"	
TP3-0-5T (A4I0129-04)	Matrix: Soil Batch: 4090299							
Diesel	540		35.5	mg/kg dry	1	09/12/14 04:10	NWTPH-Dx/SG	F-11, F-15
Oil	284		70.9	"	"	"	"	F-16
Surrogate: o-Terphenyl (Surr)			Recovery: 89 %	Limits: 50-150 %	"	"	"	
TP3-5L (A4I0129-05)			Matrix: Soi	l Ba	atch: 40904	03		
Diesel	ND		45.6	mg/kg dry	1	09/16/14 21:00	NWTPH-Dx/SG	
Oil	ND		91.3	"	"	"	"	
Surrogate: o-Terphenyl (Surr)			Recovery: 92 %	Limits: 50-150 %	"	"	"	
TP4-0-3T (A4I0129-06)			Matrix: Soi	l Ba	atch: 40902	99		
Diesel	ND		31.6	mg/kg dry	1	09/12/14 04:35	NWTPH-Dx/SG	
Oil	135		63.2	"	"	"	"	F-03
Surrogate: o-Terphenyl (Surr)			Recovery: 77 %	Limits: 50-150 %	"	"	"	
TP6-0-2T (A4I0129-08)			Matrix: Soi	l Ba	atch: 40902	99		
Diesel	ND		25.0	mg/kg dry	1	09/12/14 04:59	NWTPH-Dx/SG	
Oil	59.1		50.0	"	"	"	"	
Surrogate: o-Terphenyl (Surr)			Recovery: 97 %	Limits: 50-150 %	"	"	"	
TP6-5V (A4I0129-09)			Matrix: Soi	l Ba	atch: 40902	99		
Diesel	ND		3250	mg/kg dry	50	09/12/14 13:59	NWTPH-Dx/SG	
Oil	13000		6490	"	"	"	"	
Surrogate: o-Terphenyl (Surr)			Recovery: %	Limits: 50-150 %	"	"	"	S-01
TP7-0-3T (A4I0129-10)			Matrix: Soi	l Ba	atch: 40904	03		
Diesel	ND		66.9	mg/kg dry	1	09/16/14 21:48	NWTPH-Dx/SG	
Oil	ND		134	"	"	"	"	
Surrogate: o-Terphenyl (Surr)			Recovery: 93 %	Limits: 50-150 %	"	"	"	

Apex Laboratories

au

Anderson Geological			Proje	ct: Sadri Proper	rty			
PO Box 649			Project Numb	per: 1420.01			Repo	rted:
Wilsonville, OR 97070			Project Manag	ger: Erik Anderso	n		10/17/14 10:55	
		AN	ALYTICAL	SAMPLE RE	SULTS			
	Diesel and	d Oil Hyd	rocarbons by	NWTPH-Dx w	vith Silica C	Gel Cleanup		
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
1P11-0-31 (A410129-17)	ND		Matrix: Soli	B	atcn: 40902	99	NUTTILD /9C	
Diesel	ND		25.0	mg/kg dry	1	09/12/14 12:14	NWIPH-Dx/SG	
	ND		50.0	T				
Surrogate: o-Terphenyl (Surr)		Ι	Recovery: 86 %	Limits: 50-150 %	"	"	"	
TP12-0-2T (A4I0129-19)			Matrix: Soil	B	atch: 40902	99		
Diesel	ND		38.8	mg/kg dry 	1	09/12/14 12:35	NWTPH-Dx/SG	E 02
Oil	106		77.6	"	"	"	"	F-03
Surrogate: o-Terphenyl (Surr)		1	Recovery: 86 %	Limits: 50-150 %	"	"	"	
TP5-3.5L (A4I0129-21)			Matrix: Soil	В	atch: 40902	99		
Diesel	ND		505	mg/kg dry	10	09/12/14 14:20	NWTPH-Dx/SG	
Oil	4180		1010	"	"	"	"	
Surrogate: o-Terphenyl (Surr)		1	Recovery: 95 %	Limits: 50-150 %	"	"	"	S-05
TP13-0-2T (A4I0129-23)			Matrix: Soil	В	atch: 40902	99		
Diesel	ND		33.0	mg/kg dry	1	09/13/14 18:44	NWTPH-Dx/SG	
Oil	144		65.9	"	"	"	"	F-03
Surrogate: o-Terphenyl (Surr)		1	Recovery: 88 %	Limits: 50-150 %	"	"	"	
TP14-0-2.5T (A4I0129-25)			Matrix: Soil	В	atch: 40902	99		
Diesel	ND		38.4	mg/kg dry	1	09/13/14 19:08	NWTPH-Dx/SG	
Oil	203		76.9	"	"	"	"	F-03
Surrogate: o-Terphenyl (Surr)		1	Recovery: 91 %	Limits: 50-150 %	"	"	"	
TP14-2.5L (A4I0129-26)			Matrix: Soil	В	atch: 40904	03		
Diesel	ND		77.6	mg/kg drv	1	09/16/14 22:37	NWTPH-Dx/SG	
Oil	ND		155	"	"	"	"	
Surrogate: o-Terphenyl (Surr)		1	Recovery: 96 %	Limits: 50-150 %	"	"	"	
TP15-3.5L (A4I0129-27)			Matrix: Soil	В	atch: 40902	99		
Diesel	ND		44.3	mg/kg drv	1	09/12/14 13:17	NWTPH-Dx/SG	
Oil	ND		88.6	"	"	"	"	
Surrogate: o-Terphenyl (Surr)		1	Recovery: 92 %	Limits: 50-150 %	"	"	"	
TP16-0-2.5T (A4I0129-29RE2)			Matrix: Soil	В	atch: 40902	99		
Diesel	ND		84.6	mg/kg drv	2	09/15/14 12:09	NWTPH-Dx/SG	
Oil	373		169	"	"	"	"	F-03
Surrogate: o-Terphenyl (Surr)		Re	ecovery: 100 %	Limits: 50-150 %	"	"	"	

Apex Laboratories

au

Anderson Geological			Proj	ect: Sadri Propert	ty			
PO Box 649			Project Num	ber: 1420.01			Reported:	
Wilsonville, OR 97070			Project Mana	ager: Erik Anderson	L		10/17/14	4 10:55
		AN	ALYTICAL	SAMPLE RES	SULTS			
	Diesel an	d Oil Hydı	rocarbons b	y NWTPH-Dx w	ith Silica C	Sel Cleanup		
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
TP17-0-3T (A4l0129-31)			Matrix: So	il Ba	atch: 40902	99		
Diesel	ND		50.7	mg/kg dry	1	09/12/14 13:26	NWTPH-Dx/SG	
Oil	317		101	"	"	"	"	
Surrogate: o-Terphenyl (Surr)		Re	covery: 103 %	Limits: 50-150 %	"	"	"	
P17-3L (A4I0129-32) Matrix: Soil Batch: 4090403								
Diesel	ND		56.4	mg/kg dry	1	09/16/14 23:01	NWTPH-Dx/SG	
Oil	ND		113	"	"	"	"	
Surrogate: o-Terphenyl (Surr)		R	ecovery: 92 %	Limits: 50-150 %	"	"	"	
TP18-0-6T (A4l0129-33)			Matrix: So	il Ba	atch: 40902	99		
Diesel	ND		32.8	mg/kg dry	1	09/12/14 11:03	NWTPH-Dx/SG	
Oil	ND		65.5	"	"	"	"	
Surrogate: o-Terphenyl (Surr)		R	ecovery: 95 %	Limits: 50-150 %	"	"	"	
TP19-0-7T (A4I0129-35)			Matrix: So	il Ba	atch: 40902	99		
Diesel	ND		25.0	mg/kg dry	1	09/12/14 11:24	NWTPH-Dx/SG	
Oil	113		50.0	"	"	"	"	
Surrogate: o-Terphenyl (Surr)		R	ecovery: 98 %	Limits: 50-150 %	"	"	"	
TP20-4-8T (A4I0129-37)			Matrix: So	il Ba	atch: 40902	99		
Diesel	ND		25.0	mg/kg dry	1	09/12/14 14:07	NWTPH-Dx/SG	
Oil	117		50.0	"	"	"	"	
Surrogate: o-Terphenyl (Surr)		Re	covery: 106 %	Limits: 50-150 %	"	"	"	
IP-3 (A4I0129-40)			Matrix: So	il Ba	atch: 40902	99		
Diesel	ND		61.3	mg/kg dry	1	09/12/14 12:04	NWTPH-Dx/SG	
Oil	ND		123	"	"	"	"	
Surrogate: o-Terphenyl (Surr)		R	ecovery: 97 %	Limits: 50-150 %	"	"	"	
IP-4 (A4I0129-41)			Matrix: So	il Ba	atch: 40902	99		
Diesel	ND		59.7	mg/kg dry	1	09/12/14 12:25	NWTPH-Dx/SG	
Oil	140		119	"	"	"	"	

Surrogate: o-Terphenyl (Surr)

Recovery: 105 %

Limits: 50-150 %

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anderson Geological	Project: Sadri Property	
PO Box 649	Project Number: 1420.01	Reported:
Wilsonville, OR 97070	Project Manager: Erik Anderson	10/17/14 10:55

ANALYTICAL SAMPLE RESULTS

Polyaromatic Hydrocarbons (PAHs) by EPA 8270D SIM								
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
TP1-0-1T (A4I0129-01)			Matrix: Soil	В	atch: 409018	35		
Acenaphthene	ND		0.00632	mg/kg dry	1	09/10/14 13:18	EPA 8270D (SIM)	
Acenaphthylene	ND		0.00632		"	"	"	
Anthracene	ND		0.00632		"	"	"	
Benz(a)anthracene	ND		0.00632		"	"	"	
Benzo(a)pyrene	ND		0.00632		"	"	"	
Benzo(b+k)fluoranthene(s)	ND		0.0126		"	"	"	Q-26
Benzo(g,h,i)perylene	ND		0.00632		"	"	"	
Chrysene	ND		0.00632		"	"	"	
Dibenz(a,h)anthracene	ND		0.00632		"	"	"	
Dibenzofuran	ND		0.00632		"	"	"	
Fluoranthene	0.00926		0.00632		"	"	"	
Fluorene	ND		0.00632		"	"	"	
Indeno(1,2,3-cd)pyrene	ND		0.00632		"	"	"	
1-Methylnaphthalene	ND		0.0126		"	"	"	
2-Methylnaphthalene	ND		0.0126		"	"	"	
Naphthalene	ND		0.0126		"	"	"	
Phenanthrene	0.00931		0.00632		"	"	"	
Pyrene	0.00814		0.00632	"	"	"	"	
Surrogate: 2-Fluorobiphenyl (Surr)		R	ecovery: 74 %	Limits: 44-115 %	"	"	"	
p-Terphenyl-d14 (Surr)			83 %	Limits: 54-127 %	"	"	"	

Apex Laboratories

a

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anderson Geological	Project:	Sadri Property	
PO Box 649	Project Number:	1420.01	Reported:
Wilsonville, OR 97070	Project Manager	Erik Anderson	10/17/14 10:55

ANALYTICAL SAMPLE RESULTS

Polyaromatic Hydrocarbons (PAHs) by EPA 8270D SIM								
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
TP2-0-4T (A4I0129-03RE1)			Matrix: Soil	В	Batch: 409018	35		
Acenaphthene	ND		0.00703	mg/kg dry	1	09/11/14 10:51	EPA 8270D (SIM)	
Acenaphthylene	ND		0.00703	"	"	"	"	
Anthracene	ND		0.00703	"	"	"	"	
Benz(a)anthracene	0.00743		0.00703	"	"	"	"	
Benzo(a)pyrene	0.0144		0.00703	"	"	"	"	
Benzo(b+k)fluoranthene(s)	0.0209		0.0141	"	"	"	"	Q-26
Benzo(g,h,i)perylene	0.0113		0.00703	"	"	"	"	
Chrysene	0.0122		0.00703	"	"	"	"	
Dibenz(a,h)anthracene	ND		0.00703	"	"	"	"	
Dibenzofuran	ND		0.00703	"	"	"	"	
Fluoranthene	0.0226		0.00703	"	"	"	"	
Fluorene	ND		0.00703	"	"	"	"	
Indeno(1,2,3-cd)pyrene	0.0106		0.00703	"	"	"	"	
1-Methylnaphthalene	ND		0.0141	"	"	"	"	
2-Methylnaphthalene	ND		0.0141	"	"	"	"	
Naphthalene	0.0204		0.0141	"	"	"	"	
Phenanthrene	0.0234		0.00703	"	"	"	"	
Pyrene	0.0210		0.00703	"	"	"	"	
Surrogate: 2-Fluorobiphenyl (Surr)		F	Recovery: 91 %	Limits: 44-115 %	"	"	"	
p-Terphenyl-d14 (Surr)			115 %	Limits: 54-127 %	"	"	"	

Apex Laboratories

a

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anderson Geological	Project: Sadri Property	
PO Box 649	Project Number: 1420.01	Reported:
Wilsonville, OR 97070	Project Manager: Erik Anderson	10/17/14 10:55

ANALYTICAL SAMPLE RESULTS

Polyaromatic Hydrocarbons (PAHs) by EPA 8270D SIM								
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
TP3-0-5T (A4I0129-04)			Matrix: Soil	В	atch: 409018	35		
Acenaphthene	ND		0.00752	mg/kg dry	1	09/10/14 14:36	EPA 8270D (SIM)	
Acenaphthylene	ND		0.00752	"	"	"	"	
Anthracene	ND		0.00752	"	"	"	"	
Benz(a)anthracene	0.0108		0.00752	"	"	"	"	
Benzo(a)pyrene	0.0103		0.00752	"	"	"	"	
Benzo(b+k)fluoranthene(s)	0.0257		0.0150	"	"	"	"	Q-26
Benzo(g,h,i)perylene	0.0128		0.00752	"	"	"	"	
Chrysene	0.0132		0.00752	"	"	"	"	
Dibenz(a,h)anthracene	ND		0.00752	"	"	"	"	
Dibenzofuran	ND		0.00752	"	"	"	"	
Fluoranthene	0.0236		0.00752	"	"	"	"	
Fluorene	ND		0.00752	"	"	"	"	
Indeno(1,2,3-cd)pyrene	0.0130		0.00752	"	"	"	"	
1-Methylnaphthalene	ND		0.0150	"	"	"	"	
2-Methylnaphthalene	ND		0.0150	"	"	"	"	
Naphthalene	0.0158		0.0150	"	"	"	"	
Phenanthrene	0.0187		0.00752	"	"	"	"	
Pyrene	0.0210		0.00752	"	"	"	"	
Surrogate: 2-Fluorobiphenyl (Surr)		R	ecovery: 68 %	Limits: 44-115 %	"	"	"	
p-Terphenyl-d14 (Surr)			74 %	Limits: 54-127 %	"	"	"	

Apex Laboratories

a

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anderson Geological	Project: Sadri Property	
PO Box 649	Project Number: 1420.01	Reported:
Wilsonville, OR 97070	Project Manager: Erik Anderson	10/17/14 10:55

ANALYTICAL SAMPLE RESULTS

Polyaromatic Hydrocarbons (PAHs) by EPA 8270D SIM									
			Reporting						
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes	
TP4-0-3T (A4I0129-06)			Matrix: Soil	E	Batch: 409018	35			
Acenaphthene	ND		0.00667	mg/kg dry	1	09/10/14 15:02	EPA 8270D (SIM)		
Acenaphthylene	ND		0.00667	"	"	"	"		
Anthracene	ND		0.00667	"	"	"	"		
Benz(a)anthracene	ND		0.00667	"	"	"	"		
Benzo(a)pyrene	0.00825		0.00667	"	"	"	"		
Benzo(b+k)fluoranthene(s)	0.0226		0.0133	"	"	"	"	Q-26	
Benzo(g,h,i)perylene	0.0146		0.00667	"	"	"	"		
Chrysene	0.0136		0.00667	"	"	"	"		
Dibenz(a,h)anthracene	ND		0.00667	"	"	"	"		
Dibenzofuran	0.00687		0.00667	"	"	"	"		
Fluoranthene	0.0353		0.00667	"	"	"	"		
Fluorene	ND		0.00667	"	"	"	"		
Indeno(1,2,3-cd)pyrene	0.0115		0.00667	"	"	"	"		
1-Methylnaphthalene	ND		0.0133	"	"	"	"		
2-Methylnaphthalene	0.0135		0.0133	"	"	"	"		
Naphthalene	0.0561		0.0133	"	"	"	"		
Phenanthrene	0.0369		0.00667	"	"	"	"		
Pyrene	0.0242		0.00667	"	"	"	"		
Surrogate: 2-Fluorobiphenyl (Surr)		R	Recovery: 71 %	Limits: 44-115 %	"	"	"		
p-Terphenyl-d14 (Surr)			78 %	Limits: 54-127 %	"	"	"		

Apex Laboratories

a

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anderson Geological	Project:	Sadri Property	
PO Box 649	Project Number:	1420.01	Reported:
Wilsonville, OR 97070	Project Manager	Erik Anderson	10/17/14 10:55

ANALYTICAL SAMPLE RESULTS

Polyaromatic Hydrocarbons (PAHs) by EPA 8270D SIM								
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
TP4-3L (A4I0129-07)			Matrix: Soil	E	Batch: 409037	78		
Acenaphthene	ND		0.00962	mg/kg dry	1	09/17/14 20:02	EPA 8270D (SIM)	
Acenaphthylene	0.0151		0.00962	"	"	"	"	
Anthracene	ND		0.00962	"	"	"	"	
Benz(a)anthracene	ND		0.00962	"	"	"	"	
Benzo(a)pyrene	ND		0.00962	"	"	"	"	
Benzo(b)fluoranthene	ND		0.00962	"	"	"	"	
Benzo(k)fluoranthene	ND		0.00962	"	"	"	"	
Benzo(g,h,i)perylene	ND		0.00962	"	"	"	"	
Chrysene	ND		0.00962	"	"	"	"	
Dibenz(a,h)anthracene	ND		0.00962	"	"	"	"	
Dibenzofuran	ND		0.00962	"	"	"	"	
Fluoranthene	ND		0.00962	"	"	"	"	
Fluorene	ND		0.00962	"	"	"	"	
Indeno(1,2,3-cd)pyrene	ND		0.00962	"	"	"	"	
1-Methylnaphthalene	ND		0.0192	"	"	"	"	
2-Methylnaphthalene	ND		0.0192	"	"	"	"	
Naphthalene	ND		0.0192	"	"	"	"	
Phenanthrene	0.0144		0.00962	"	"	"	"	
Pyrene	ND		0.00962	"	"	"	"	
Surrogate: 2-Fluorobiphenyl (Surr)		R	Recovery: 82 %	Limits: 44-115 %	"	"	"	
p-Terphenyl-d14 (Surr)			85 %	Limits: 54-127 %	"	"	"	

Apex Laboratories

a

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anderson Geological	Project: Sadri Property	
PO Box 649	Project Number: 1420.01	Reported:
Wilsonville, OR 97070	Project Manager: Erik Anderson	10/17/14 10:55

ANALYTICAL SAMPLE RESULTS

Polyaromatic Hydrocarbons (PAHs) by EPA 8270D SIM								
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
TP6-0-2T (A4I0129-08)			Matrix: Soil	В	atch: 409018	35		
Acenaphthene	ND		0.00425	mg/kg dry	1	09/10/14 15:28	EPA 8270D (SIM)	
Acenaphthylene	ND		0.00425	"	"	"	"	
Anthracene	ND		0.00425	"	"	"	"	
Benz(a)anthracene	ND		0.00425	"	"	"	"	
Benzo(a)pyrene	ND		0.00425	"	"	"	"	
Benzo(b+k)fluoranthene(s)	ND		0.00849		"	"	"	Q-26
Benzo(g,h,i)perylene	ND		0.00425	"	"	"	"	
Chrysene	ND		0.00425		"	"	"	
Dibenz(a,h)anthracene	ND		0.00425	"	"	"	"	
Dibenzofuran	ND		0.00425	"	"	"	"	
Fluoranthene	0.00514		0.00425	"	"	"	"	
Fluorene	ND		0.00425	"	"	"	"	
Indeno(1,2,3-cd)pyrene	ND		0.00425	"	"	"	"	
1-Methylnaphthalene	ND		0.00849	"	"	"	"	
2-Methylnaphthalene	ND		0.00849	"	"	"	"	
Naphthalene	ND		0.00849	"	"	"	"	
Phenanthrene	ND		0.00425	"	"	"	"	
Pyrene	0.00480		0.00425	"	"	"	"	
Surrogate: 2-Fluorobiphenyl (Surr)		R	ecovery: 70 %	Limits: 44-115 %	"	"	"	
p-Terphenyl-d14 (Surr)			82 %	Limits: 54-127 %	"	"	"	

Apex Laboratories

a

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anderson Geological	Project: Sadri Property	
PO Box 649	Project Number: 1420.01	Reported:
Wilsonville, OR 97070	Project Manager: Erik Anderson	10/17/14 10:55

ANALYTICAL SAMPLE RESULTS

Polyaromatic Hydrocarbons (PAHs) by EPA 8270D SIM									
			Reporting						
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes	
TP6-5V (A4I0129-09)			Matrix: Soil	В	atch: 409018	35			
Acenaphthene	0.0998		0.0639	mg/kg dry	5	09/10/14 15:54	EPA 8270D (SIM)		
Acenaphthylene	ND		0.0639	"	"	"	"		
Anthracene	ND		0.0959	"	"	"	"	R-02	
Benz(a)anthracene	ND		0.0639	"	"	"	"		
Benzo(a)pyrene	0.0812		0.0639	"	"	"	"		
Benzo(b+k)fluoranthene(s)	ND		0.128	"	"	"	"	Q-26	
Benzo(g,h,i)perylene	ND		0.0639	"	"	"	"		
Chrysene	ND		0.0799	"	"	"	"	R-02	
Dibenz(a,h)anthracene	ND		0.0639	"	"	"	"		
Dibenzofuran	0.0682		0.0639	"	"	"	"		
Fluoranthene	0.170		0.0639		"	"	"		
Fluorene	0.134		0.0639		"	"	"		
Indeno(1,2,3-cd)pyrene	ND		0.0639		"	"	"		
1-Methylnaphthalene	ND		0.128		"	"	"		
2-Methylnaphthalene	ND		0.128		"	"	"		
Naphthalene	0.226		0.128		"	"	"		
Phenanthrene	0.327		0.0639	"	"	"	"		
Pyrene	0.188		0.0639	"	"	"	"		
Surrogate: 2-Fluorobiphenyl (Surr)		F	Recovery: 68 %	Limits: 44-115 %	"	"	"		
p-Terphenyl-d14 (Surr)			80 %	Limits: 54-127 %	"	"	"		

Apex Laboratories

a

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anderson Geological	Project: Sadri Property	
PO Box 649	Project Number: 1420.01	Reported:
Wilsonville, OR 97070	Project Manager: Erik Anderson	10/17/14 10:55

ANALYTICAL SAMPLE RESULTS

Polyaromatic Hydrocarbons (PAHs) by EPA 8270D SIM										
			Reporting							
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes		
TP7-0-3T (A4I0129-10)			Matrix: Soil	B	Batch: 409037	78				
Acenaphthene	ND		0.0102	mg/kg dry	1	09/17/14 20:55	EPA 8270D (SIM)			
Acenaphthylene	0.0215		0.0102	"	"	"	"			
Anthracene	ND		0.0102	"	"	"	"			
Benz(a)anthracene	0.0135		0.0102	"	"	"	"			
Benzo(a)pyrene	0.0166		0.0102	"	"	"	"			
Benzo(b+k)fluoranthene(s)	0.0273		0.0204	"	"	"	"	Q-26		
Benzo(g,h,i)perylene	0.0161		0.0102	"	"	"	"			
Chrysene	0.0153		0.0102	"	"	"	"			
Dibenz(a,h)anthracene	ND		0.0102	"	"	"	"			
Dibenzofuran	0.0111		0.0102	"	"	"	"			
Fluoranthene	0.0466		0.0102	"	"	"	"			
Fluorene	0.0116		0.0102	"	"	"	"			
Indeno(1,2,3-cd)pyrene	0.0134		0.0102	"	"	"	"			
1-Methylnaphthalene	ND		0.0204	"	"	"	"			
2-Methylnaphthalene	ND		0.0204	"	"	"	"			
Naphthalene	0.121		0.0204	"	"	"	"			
Phenanthrene	0.0550		0.0102	"	"	"	"			
Pyrene	0.0459		0.0102	"	"	"	"			
Surrogate: 2-Fluorobiphenyl (Surr)		R	Recovery: 81 %	Limits: 44-115 %	"	"	"			
p-Terphenyl-d14 (Surr)			87 %	Limits: 54-127 %	"	"	"			

Apex Laboratories

au

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anderson Geological	Project: Sadri Property	
PO Box 649	Project Number: 1420.01	Reported:
Wilsonville, OR 97070	Project Manager: Erik Anderson	10/17/14 10:55

ANALYTICAL SAMPLE RESULTS

Polyaromatic Hydrocarbons (PAHs) by EPA 8270D SIM									
			Reporting						
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes	
TP7-3L (A4l0129-11)			Matrix: Soil	В	atch: 409037	78			
Acenaphthene	ND		0.00837	mg/kg dry	1	09/17/14 21:22	EPA 8270D (SIM)		
Acenaphthylene	0.0373		0.00837	"	"	"	"		
Anthracene	ND		0.00837	"	"	"	"		
Benz(a)anthracene	ND		0.00837	"	"	"	"		
Benzo(a)pyrene	ND		0.00837	"	"	"	"		
Benzo(b+k)fluoranthene(s)	0.0210		0.0167	"	"	"	"	Q-26	
Benzo(g,h,i)perylene	0.00933		0.00837	"	"	"	"		
Chrysene	ND		0.00837	"	"	"	"		
Dibenz(a,h)anthracene	ND		0.00837	"	"	"	"		
Dibenzofuran	0.00975		0.00837	"	"	"	"		
Fluoranthene	0.0410		0.00837	"	"	"	"		
Fluorene	0.0118		0.00837	"	"	"	"		
Indeno(1,2,3-cd)pyrene	ND		0.00837	"	"	"	"		
1-Methylnaphthalene	ND		0.0167	"	"	"	"		
2-Methylnaphthalene	ND		0.0167	"	"	"	"		
Naphthalene	0.120		0.0167	"	"	"	"		
Phenanthrene	0.0610		0.00837	"	"	"	"		
Pyrene	0.0435		0.00837	"	"	"	"		
Surrogate: 2-Fluorobiphenyl (Surr)		R	Recovery: 79 %	Limits: 44-115 %	"	"	"		
p-Terphenyl-d14 (Surr)			85 %	Limits: 54-127 %	"	"	"		

Apex Laboratories

a

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anderson Geological	Project: Sadri Property	
PO Box 649	Project Number: 1420.01	Reported:
Wilsonville, OR 97070	Project Manager: Erik Anderson	10/17/14 10:55

ANALYTICAL SAMPLE RESULTS

Polyaromatic Hydrocarbons (PAHs) by EPA 8270D SIM										
			Reporting							
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes		
TP8-0-2.5T (A4I0129-12)			Matrix: Soil	В	atch: 409037	78				
Acenaphthene	ND		0.00403	mg/kg dry	1	09/17/14 21:48	EPA 8270D (SIM)			
Acenaphthylene	ND		0.00403	"	"	"	"			
Anthracene	ND		0.00403	"	"	"	"			
Benz(a)anthracene	ND		0.00403	"	"	"	"			
Benzo(a)pyrene	ND		0.00403	"	"	"	"			
Benzo(b)fluoranthene	ND		0.00403	"	"	"	"			
Benzo(k)fluoranthene	ND		0.00403	"	"	"	"			
Benzo(g,h,i)perylene	ND		0.00403	"	"	"	"			
Chrysene	ND		0.00403	"	"	"	"			
Dibenz(a,h)anthracene	ND		0.00403	"	"	"	"			
Dibenzofuran	ND		0.00403	"	"	"	"			
Fluoranthene	ND		0.00403	"	"	"	"			
Fluorene	ND		0.00403	"	"	"	"			
Indeno(1,2,3-cd)pyrene	ND		0.00403	"	"	"	"			
1-Methylnaphthalene	ND		0.00807	"	"	"	"			
2-Methylnaphthalene	ND		0.00807	"	"	"	"			
Naphthalene	ND		0.00807	"	"	"	"			
Phenanthrene	ND		0.00403	"	"	"	"			
Pyrene	ND		0.00403	"	"	"	"			
Surrogate: 2-Fluorobiphenyl (Surr)		R	ecovery: 80 %	Limits: 44-115 %	"	"	"			
p-Terphenyl-d14 (Surr)			88 %	Limits: 54-127 %	"	"	"			

Apex Laboratories

a

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anderson Geological	Project: Sadri Property	
PO Box 649	Project Number: 1420.01	Reported:
Wilsonville, OR 97070	Project Manager: Erik Anderson	10/17/14 10:55

ANALYTICAL SAMPLE RESULTS

Polyaromatic Hydrocarbons (PAHs) by EPA 8270D SIM									
			Reporting						
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes	
TP8-2.5L (A4I0129-13)			Matrix: Soil	В	atch: 409037	78			
Acenaphthene	ND		0.00367	mg/kg dry	1	09/17/14 22:15	EPA 8270D (SIM)		
Acenaphthylene	ND		0.00367	"	"	"	"		
Anthracene	ND		0.00367	"	"	"	"		
Benz(a)anthracene	ND		0.00367		"	"	"		
Benzo(a)pyrene	ND		0.00367	"	"	"	"		
Benzo(b)fluoranthene	ND		0.00367	"	"	"	"		
Benzo(k)fluoranthene	ND		0.00367	"	"	"	"		
Benzo(g,h,i)perylene	ND		0.00367	"	"	"	"		
Chrysene	ND		0.00367	"	"	"	"		
Dibenz(a,h)anthracene	ND		0.00367	"	"	"	"		
Dibenzofuran	ND		0.00367	"	"	"	"		
Fluoranthene	ND		0.00367	"	"	"	"		
Fluorene	ND		0.00367	"	"	"	"		
Indeno(1,2,3-cd)pyrene	ND		0.00367	"	"	"	"		
1-Methylnaphthalene	ND		0.00734	"	"	"	"		
2-Methylnaphthalene	ND		0.00734	"	"	"	"		
Naphthalene	ND		0.00734	"	"	"	"		
Phenanthrene	ND		0.00367	"	"	"	"		
Pyrene	ND		0.00367	"	"	"	"		
Surrogate: 2-Fluorobiphenyl (Surr)		R	Recovery: 77 %	Limits: 44-115 %	"	"	"		
p-Terphenyl-d14 (Surr)			87 %	Limits: 54-127 %	"	"	"		

Apex Laboratories

a

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anderson Geological	Project:	Sadri Property	
PO Box 649	Project Number:	1420.01	Reported:
Wilsonville, OR 97070	Project Manager	Erik Anderson	10/17/14 10:55

ANALYTICAL SAMPLE RESULTS

Polyaromatic Hydrocarbons (PAHs) by EPA 8270D SIM										
			Reporting							
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes		
TP10-6L (A4I0129-16)			Matrix: Soil	В	atch: 409037	78				
Acenaphthene	ND		0.0101	mg/kg dry	1	09/17/14 22:41	EPA 8270D (SIM)			
Acenaphthylene	0.0214		0.0101		"	"	"			
Anthracene	ND		0.0101	"	"	"	"			
Benz(a)anthracene	0.0153		0.0101	"	"	"	"			
Benzo(a)pyrene	0.0134		0.0101		"	"	"			
Benzo(b+k)fluoranthene(s)	0.0252		0.0203	"	"	"	"	Q-26		
Benzo(g,h,i)perylene	0.0206		0.0101		"	"	"			
Chrysene	0.0133		0.0101	"	"	"	"			
Dibenz(a,h)anthracene	ND		0.0101	"	"	"	"			
Dibenzofuran	ND		0.0101	"	"	"	"			
Fluoranthene	0.0444		0.0101	"	"	"	"			
Fluorene	0.0118		0.0101		"	"	"			
Indeno(1,2,3-cd)pyrene	0.0154		0.0101		"	"	"			
1-Methylnaphthalene	ND		0.0203	"	"	"	"			
2-Methylnaphthalene	ND		0.0203	"	"	"	"			
Naphthalene	0.139		0.0203	"	"	"	"			
Phenanthrene	0.0533		0.0101	"	"	"	"			
Pyrene	0.0464		0.0101	"	"	"	"			
Surrogate: 2-Fluorobiphenyl (Surr)		R	ecovery: 82 %	Limits: 44-115 %	"	"	"			
p-Terphenyl-d14 (Surr)			87 %	Limits: 54-127 %	"	"	"			

Apex Laboratories

a

Darwin Thomas, Business Development Director

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anderson Geological	Project:	Sadri Property	
PO Box 649	Project Number:	1420.01	Reported:
Wilsonville, OR 97070	Project Manager	Erik Anderson	10/17/14 10:55

ANALYTICAL SAMPLE RESULTS

Polyaromatic Hydrocarbons (PAHs) by EPA 8270D SIM								
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
TP11-0-3T (A4I0129-17)			Matrix: Soil	B	atch: 409018	35		
Acenaphthene	ND		0.00427	mg/kg dry	1	09/10/14 16:19	EPA 8270D (SIM)	
Acenaphthylene	ND		0.00427	"	"	"	"	
Anthracene	ND		0.00427	"	"	"	"	
Benz(a)anthracene	ND		0.00427		"	"	"	
Benzo(a)pyrene	ND		0.00427		"	"	"	
Benzo(b)fluoranthene	ND		0.00427		"	"	"	
Benzo(k)fluoranthene	ND		0.00427		"	"	"	
Benzo(g,h,i)perylene	ND		0.00427		"	"	"	
Chrysene	ND		0.00427	"	"	"		
Dibenz(a,h)anthracene	ND		0.00427		"	"	"	
Dibenzofuran	ND		0.00427		"	"	"	
Fluoranthene	ND		0.00427		"	"	"	
Fluorene	ND		0.00427		"	"	"	
Indeno(1,2,3-cd)pyrene	ND		0.00427		"	"	"	
1-Methylnaphthalene	ND		0.00854		"	"	"	
2-Methylnaphthalene	ND		0.00854	"	"	"	"	
Naphthalene	ND		0.00854	"	"	"	"	
Phenanthrene	ND		0.00427	"	"	"	"	
Pyrene	ND		0.00427	"	"	"	"	
Surrogate: 2-Fluorobiphenyl (Surr)		R	ecovery: 68 %	Limits: 44-115 %	"	"	"	
p-Terphenyl-d14 (Surr)			82 %	Limits: 54-127 %	"	"	"	

Apex Laboratories

a

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anderson Geological	Project: Sadri Property	
PO Box 649	Project Number: 1420.01	Reported:
Wilsonville, OR 97070	Project Manager: Erik Anderson	10/17/14 10:55

ANALYTICAL SAMPLE RESULTS

Polyaromatic Hydrocarbons (PAHs) by EPA 8270D SIM									
			Reporting						
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes	
TP12-0-2T (A4I0129-19)			Matrix: Soil	В	atch: 409018	35			
Acenaphthene	ND		0.00776	mg/kg dry	1	09/10/14 16:45	EPA 8270D (SIM)		
Acenaphthylene	0.00892		0.00776	"	"	"	"		
Anthracene	ND		0.00776	"	"	"	"		
Benz(a)anthracene	0.00810		0.00776	"	"	"	"		
Benzo(a)pyrene	0.00858		0.00776	"	"	"	"		
Benzo(b+k)fluoranthene(s)	0.0194		0.0155	"	"	"	"	Q-26	
Benzo(g,h,i)perylene	0.00928		0.00776	"	"	"	"		
Chrysene	0.0109		0.00776	"	"	"	"		
Dibenz(a,h)anthracene	ND		0.00776	"	"	"	"		
Dibenzofuran	0.0216		0.00776	"	"	"	"		
Fluoranthene	0.0276		0.00776	"	"	"	"		
Fluorene	ND		0.00776	"	"	"	"		
Indeno(1,2,3-cd)pyrene	0.00881		0.00776	"	"	"	"		
1-Methylnaphthalene	ND		0.0155	"	"	"	"		
2-Methylnaphthalene	0.0231		0.0155	"	"	"	"		
Naphthalene	0.102		0.0155	"	"	"	"		
Phenanthrene	0.0478		0.00776	"	"	"	"		
Pyrene	0.0257		0.00776	"	"	"	"		
Surrogate: 2-Fluorobiphenyl (Surr)		1	Recovery: 71 %	Limits: 44-115 %	"	"	"		
p-Terphenyl-d14 (Surr)			75 %	Limits: 54-127 %	"	"	"		

Apex Laboratories

au

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anderson Geological	Project:	Sadri Property	
PO Box 649	Project Number:	1420.01	Reported:
Wilsonville, OR 97070	Project Manager:	Erik Anderson	10/17/14 10:55

ANALYTICAL SAMPLE RESULTS

Polyaromatic Hydrocarbons (PAHs) by EPA 8270D SIM								
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
TP12-4L (A4I0129-20)			Matrix: Soil	E	Batch: 409037	78		
Acenaphthene	ND		0.00771	mg/kg dry	1	09/17/14 23:07	EPA 8270D (SIM)	
Acenaphthylene	ND		0.00771	"	"	"	"	
Anthracene	ND		0.00771	"	"	"	"	
Benz(a)anthracene	ND		0.00771	"	"	"	"	
Benzo(a)pyrene	ND		0.00771	"	"	"	"	
Benzo(b+k)fluoranthene(s)	ND		0.0154	"	"	"	"	Q-26
Benzo(g,h,i)perylene	ND		0.00771	"	"	"	"	
Chrysene	ND		0.00771	"	"	"	"	
Dibenz(a,h)anthracene	ND		0.00771	"	"	"	"	
Dibenzofuran	ND		0.00771	"	"	"	"	
Fluoranthene	0.00885		0.00771	"	"	"	"	
Fluorene	ND		0.00771	"	"	"	"	
Indeno(1,2,3-cd)pyrene	ND		0.00771	"	"	"	"	
1-Methylnaphthalene	ND		0.0154	"	"	"	"	
2-Methylnaphthalene	ND		0.0154	"	"	"	"	
Naphthalene	0.0200		0.0154	"	"	"	"	
Phenanthrene	0.0141		0.00771	"	"	"	"	
Pyrene	0.00960		0.00771	"	"	"	"	
Surrogate: 2-Fluorobiphenyl (Surr)		R	ecovery: 74 %	Limits: 44-115 %	"	"	"	
p-Terphenyl-d14 (Surr)			80 %	Limits: 54-127 %	"	"	"	

Apex Laboratories

a

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anderson Geological	Project: Sadri Property	
PO Box 649	Project Number: 1420.01	Reported:
Wilsonville, OR 97070	Project Manager: Erik Anderson	10/17/14 10:55

ANALYTICAL SAMPLE RESULTS

Polyaromatic Hydrocarbons (PAHs) by EPA 8270D SIM								
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
TP13-0-2T (A4I0129-23RE1)			Matrix: Soil	Bi	atch: 409018	35		
Acenaphthene	ND		0.00718	mg/kg dry	1	09/11/14 11:17	EPA 8270D (SIM)	
Acenaphthylene	ND		0.00718	"	"	"	"	
Anthracene	ND		0.00718	"	"	"	"	
Benz(a)anthracene	ND		0.00718	"	"	"	"	
Benzo(a)pyrene	ND		0.00718	"	"	"	"	
Benzo(b+k)fluoranthene(s)	ND		0.0144	"	"	"	"	Q-26
Benzo(g,h,i)perylene	0.0163		0.00718	"	"	"	"	
Chrysene	0.00763		0.00718	"	"	"	"	
Dibenz(a,h)anthracene	ND		0.00718	"	"	"	"	
Dibenzofuran	ND		0.00718	"	"	"	"	
Fluoranthene	0.0127		0.00718	"	"	"	"	
Fluorene	ND		0.00718	"	"	"	"	
Indeno(1,2,3-cd)pyrene	0.0139		0.00718	"	"	"	"	
1-Methylnaphthalene	ND		0.0144	"	"	"	"	
2-Methylnaphthalene	ND		0.0144	"	"	"	"	
Naphthalene	0.0202		0.0144	"	"	"	"	
Phenanthrene	0.0163		0.00718	"	"	"	"	
Pyrene	0.00989		0.00718	"	"	"	"	
Surrogate: 2-Fluorobiphenyl (Surr)		R	Recovery: 84 %	Limits: 44-115 %	"	"	"	
p-Terphenyl-d14 (Surr)			108 %	Limits: 54-127 %	"	"	"	

Apex Laboratories

a

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anderson Geological	Project: Sadri Property	
PO Box 649	Project Number: 1420.01	Reported:
Wilsonville, OR 97070	Project Manager: Erik Anderson	10/17/14 10:55

ANALYTICAL SAMPLE RESULTS

Polyaromatic Hydrocarbons (PAHs) by EPA 8270D SIM								
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
TP14-0-2.5T (A4I0129-25)			Matrix: Soil	В	atch: 409018	35		
Acenaphthene	ND		0.00733	mg/kg dry	1	09/10/14 17:37	EPA 8270D (SIM)	
Acenaphthylene	ND		0.00733	"	"	"	"	
Anthracene	ND		0.00733	"	"	"	"	
Benz(a)anthracene	ND		0.00733	"	"	"	"	
Benzo(a)pyrene	ND		0.00733	"	"	"	"	
Benzo(b+k)fluoranthene(s)	ND		0.0147	"	"	"	"	Q-26
Benzo(g,h,i)perylene	0.00771		0.00733	"	"	"	"	
Chrysene	0.00734		0.00733	"	"	"	"	
Dibenz(a,h)anthracene	ND		0.00733	"	"	"	"	
Dibenzofuran	0.00797		0.00733	"	"	"	"	
Fluoranthene	0.0193		0.00733	"	"	"	"	
Fluorene	ND		0.00733	"	"	"	"	
Indeno(1,2,3-cd)pyrene	ND		0.00733	"	"	"	"	
1-Methylnaphthalene	0.0202		0.0147	"	"	"	"	
2-Methylnaphthalene	0.0453		0.0147	"	"	"	"	
Naphthalene	0.0615		0.0147	"	"	"	"	
Phenanthrene	0.0269		0.00733	"	"	"	"	
Pyrene	0.0180		0.00733	"	"	"	"	
Surrogate: 2-Fluorobiphenyl (Surr)		F	Recovery: 65 %	Limits: 44-115 %	"	"	"	
p-Terphenyl-d14 (Surr)			73 %	Limits: 54-127 %	"	"	"	

Apex Laboratories

a

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anderson Geological	Project: Sadri Property	
PO Box 649	Project Number: 1420.01	Reported:
Wilsonville, OR 97070	Project Manager: Erik Anderson	10/17/14 10:55

ANALYTICAL SAMPLE RESULTS

Polyaromatic Hydrocarbons (PAHs) by EPA 8270D SIM								
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
TP14-2.5L (A4I0129-26)			Matrix: Soil	В	atch: 409037	78		
Acenaphthene	ND		0.0123	mg/kg dry	1	09/17/14 23:34	EPA 8270D (SIM)	
Acenaphthylene	ND		0.0123		"	"	"	
Anthracene	ND		0.0123		"	"	"	
Benz(a)anthracene	ND		0.0123	"	"	"	"	
Benzo(a)pyrene	0.0155		0.0123		"	"	"	
Benzo(b+k)fluoranthene(s)	0.0248		0.0246	"	"	"	"	Q-26
Benzo(g,h,i)perylene	0.0226		0.0123	"	"	"	"	
Chrysene	0.0160		0.0123	"	"	"	"	
Dibenz(a,h)anthracene	ND		0.0123	"	"	"	"	
Dibenzofuran	ND		0.0123	"	"	"	"	
Fluoranthene	0.0288		0.0123		"	"	"	
Fluorene	ND		0.0123	"	"	"	"	
Indeno(1,2,3-cd)pyrene	0.0174		0.0123	"	"	"	"	
1-Methylnaphthalene	ND		0.0246	"	"	"	"	
2-Methylnaphthalene	ND		0.0246	"	"	"	"	
Naphthalene	0.0388		0.0246	"	"	"	"	
Phenanthrene	0.0239		0.0123		"	"	"	
Pyrene	0.0371		0.0123	"	"	"	"	
Surrogate: 2-Fluorobiphenyl (Surr)		R	Recovery: 77 %	Limits: 44-115 %	"	"	"	
p-Terphenyl-d14 (Surr)			72 %	Limits: 54-127 %	"	"		

Apex Laboratories

au

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anderson Geological	Project: Sadri Property	
PO Box 649	Project Number: 1420.01	Reported:
Wilsonville, OR 97070	Project Manager: Erik Anderson	10/17/14 10:55

ANALYTICAL SAMPLE RESULTS

	Pol	yaromati	c Hydrocarbo	ons (PAHs) by	EPA 8270D	SIM		
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
TP15-3.5L (A4I0129-27RE1)			Matrix: Soil	В	atch: 409018	35		
Acenaphthene	ND		0.00861	mg/kg dry	1	09/11/14 11:44	EPA 8270D (SIM)	
Acenaphthylene	0.0141		0.00861		"	"	"	
Anthracene	ND		0.00861		"	"	"	
Benz(a)anthracene	ND		0.00861		"	"	"	
Benzo(a)pyrene	0.0108		0.00861	"	"	"	"	
Benzo(b+k)fluoranthene(s)	0.0193		0.0172		"	"	"	Q-26
Benzo(g,h,i)perylene	0.0391		0.00861	"	"	"	"	
Chrysene	ND		0.00861	"	"	"	"	
Dibenz(a,h)anthracene	ND		0.00861	"	"	"	"	
Dibenzofuran	0.00863		0.00861	"	"	"	"	
Fluoranthene	0.0339		0.00861		"	"	"	
Fluorene	ND		0.00861	"	"	"	"	
Indeno(1,2,3-cd)pyrene	0.0254		0.00861	"	"	"	"	
1-Methylnaphthalene	ND		0.0172	"	"	"	"	
2-Methylnaphthalene	ND		0.0172	"	"	"	"	
Naphthalene	0.0738		0.0172	"	"	"	"	
Phenanthrene	0.0427		0.00861	"	"	"	"	
Pyrene	0.0335		0.00861	"	"	"	"	
Surrogate: 2-Fluorobiphenyl (Surr)		I	Recovery: 79 %	Limits: 44-115 %	"	"	"	
p-Terphenyl-d14 (Surr)			100 %	Limits: 54-127 %	"	"	"	

Apex Laboratories

au

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anderson Geological	Project: Sadri Property	
PO Box 649	Project Number: 1420.01	Reported:
Wilsonville, OR 97070	Project Manager: Erik Anderson	10/17/14 10:55

ANALYTICAL SAMPLE RESULTS

Polyaromatic Hydrocarbons (PAHs) by EPA 8270D SIM								
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
TP15-5V (A4I0129-28)			Matrix: Soil	E	Batch: 409037	78		
Acenaphthene	ND		0.00913	mg/kg dry	1	09/18/14 00:00	EPA 8270D (SIM)	
Acenaphthylene	ND		0.00913	"	"	"	"	
Anthracene	ND		0.00913	"	"	"	"	
Benz(a)anthracene	ND		0.00913	"	"	"	"	
Benzo(a)pyrene	ND		0.00913	"	"	"	"	
Benzo(b)fluoranthene	ND		0.00913	"	"	"	"	
Benzo(k)fluoranthene	ND		0.00913	"	"	"	"	
Benzo(g,h,i)perylene	ND		0.00913	"	"	"	"	
Chrysene	ND		0.00913	"	"	"	"	
Dibenz(a,h)anthracene	ND		0.00913	"	"	"	"	
Dibenzofuran	ND		0.00913	"	"	"	"	
Fluoranthene	ND		0.00913	"	"	"	"	
Fluorene	ND		0.00913	"	"	"	"	
Indeno(1,2,3-cd)pyrene	ND		0.00913	"	"	"	"	
1-Methylnaphthalene	ND		0.0183	"	"	"	"	
2-Methylnaphthalene	ND		0.0183	"	"	"	"	
Naphthalene	ND		0.0183	"	"	"	"	
Phenanthrene	ND		0.00913	"	"	"	"	
Pyrene	ND		0.00913	"	"	"	"	
Surrogate: 2-Fluorobiphenyl (Surr)		R	Recovery: 80 %	Limits: 44-115 %	"	"	"	
p-Terphenyl-d14 (Surr)			85 %	Limits: 54-127 %	"	"	"	

Apex Laboratories

a

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anderson Geological	Project: Sadri Property	
PO Box 649	Project Number: 1420.01	Reported:
Wilsonville, OR 97070	Project Manager: Erik Anderson	10/17/14 10:55

ANALYTICAL SAMPLE RESULTS

	Pol	yaromatio	c Hydrocarbo	ons (PAHs) by	EPA 8270D	SIM		
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
TP16-0-2.5T (A4I0129-29RE1)			Matrix: Soil	В	atch: 409018	35		
Acenaphthene	ND		0.0409	mg/kg dry	5	09/11/14 12:10	EPA 8270D (SIM)	
Acenaphthylene	ND		0.0409		"	"	"	
Anthracene	ND		0.0409		"	"	"	
Benz(a)anthracene	0.116		0.0409	"	"	"	"	
Benzo(a)pyrene	0.155		0.0409	"	"	"	"	
Benzo(b+k)fluoranthene(s)	0.252		0.0818		"	"	"	Q-26
Benzo(g,h,i)perylene	0.319		0.0409	"	"	"	"	
Chrysene	0.150		0.0409		"	"	"	
Dibenz(a,h)anthracene	ND		0.0409		"	"	"	
Dibenzofuran	ND		0.0409		"	"	"	
Fluoranthene	0.279		0.0409		"	"	"	
Fluorene	ND		0.0409		"	"	"	
Indeno(1,2,3-cd)pyrene	0.235		0.0409		"	"	"	
1-Methylnaphthalene	ND		0.0818	"	"	"	"	
2-Methylnaphthalene	ND		0.0818	"	"	"	"	
Naphthalene	0.135		0.0818		"	"	"	
Phenanthrene	0.144		0.0409		"	"	"	
Pyrene	0.224		0.0409	"	"	"	"	
Surrogate: 2-Fluorobiphenyl (Surr)		R	ecovery: 90 %	Limits: 44-115 %	"	"		
p-Terphenyl-d14 (Surr)			92 %	Limits: 54-127 %	"	"	"	

Apex Laboratories

au

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anderson Geological	Project: Sadri Property	
PO Box 649	Project Number: 1420.01	Reported:
Wilsonville, OR 97070	Project Manager: Erik Anderson	10/17/14 10:55

ANALYTICAL SAMPLE RESULTS

	Pol	yaromati	c Hydrocarbo	ons (PAHs) by	EPA 82700	SIM		
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
TP16-2.5L (A4I0129-30)			Matrix: Soil	В	atch: 40903	78		
Acenaphthene	ND		0.00761	mg/kg dry	1	09/18/14 00:27	EPA 8270D (SIM)	
Acenaphthylene	0.0114		0.00761	"	"	"	"	
Anthracene	ND		0.00761	"	"	"	"	
Benz(a)anthracene	0.0128		0.00761	"	"	"	"	
Benzo(a)pyrene	0.0161		0.00761	"	"	"	"	
Benzo(b+k)fluoranthene(s)	0.0298		0.0152	"	"	"	"	Q-26
Benzo(g,h,i)perylene	0.0219		0.00761	"	"	"	"	
Chrysene	0.0160		0.00761	"	"	"	"	
Dibenz(a,h)anthracene	ND		0.00761	"	"	"	"	
Dibenzofuran	0.0115		0.00761	"	"	"	"	
Fluoranthene	0.0444		0.00761	"	"	"	"	
Fluorene	ND		0.00761	"	"	"	"	
Indeno(1,2,3-cd)pyrene	0.0174		0.00761	"	"	"	"	
1-Methylnaphthalene	ND		0.0152	"	"	"	"	
2-Methylnaphthalene	ND		0.0152	"	"	"	"	
Naphthalene	0.115		0.0152	"	"	"	"	
Phenanthrene	0.0534		0.00761	"	"	"	"	
Pyrene	0.0412		0.00761	"	"	"	"	
Surrogate: 2-Fluorobiphenyl (Surr)		i	Recovery: 83 %	Limits: 44-115 %	"	"	"	
p-Terphenyl-d14 (Surr)			84 %	Limits: 54-127 %	"	"	"	

Apex Laboratories

au

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anderson Geological	Project: Sadri Property	
PO Box 649	Project Number: 1420.01	Reported:
Wilsonville, OR 97070	Project Manager: Erik Anderson	10/17/14 10:55

ANALYTICAL SAMPLE RESULTS

	Pol	yaromatio	c Hydrocarbo	ons (PAHs) by	EPA 8270D	SIM		
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
TP17-0-3T (A4l0129-31)			Matrix: Soil	В	atch: 409018	35		
Acenaphthene	ND		0.0497	mg/kg dry	5	09/10/14 18:54	EPA 8270D (SIM)	
Acenaphthylene	0.0537		0.0497	"	"	"	"	
Anthracene	ND		0.0497	"	"	"	"	
Benz(a)anthracene	0.0874		0.0497	"	"	"	"	
Benzo(a)pyrene	0.125		0.0497	"	"	"	"	
Benzo(b+k)fluoranthene(s)	0.264		0.0994	"	"	"	"	Q-26
Benzo(g,h,i)perylene	0.323		0.0497	"	"	"	"	
Chrysene	0.144		0.0497	"	"	"	"	
Dibenz(a,h)anthracene	ND		0.0497	"	"	"	"	
Dibenzofuran	ND		0.0497	"	"	"	"	
Fluoranthene	0.361		0.0497	"	"	"	"	
Fluorene	ND		0.0497	"	"	"	"	
Indeno(1,2,3-cd)pyrene	0.240		0.0497	"	"	"	"	
1-Methylnaphthalene	ND		0.0994	"	"	"	"	
2-Methylnaphthalene	ND		0.0994	"	"	"	"	
Naphthalene	0.395		0.0994	"	"	"	"	
Phenanthrene	0.343		0.0497	"	"	"	"	
Pyrene	0.332		0.0497	"	"	"	"	
Surrogate: 2-Fluorobiphenyl (Surr)		R	ecovery: 74 %	Limits: 44-115 %	"	"	"	
p-Terphenyl-d14 (Surr)			84 %	Limits: 54-127 %	"	"	"	

Apex Laboratories

au

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anderson Geological	Project: Sadri Property	
PO Box 649	Project Number: 1420.01	Reported:
Wilsonville, OR 97070	Project Manager: Erik Anderson	10/17/14 10:55

ANALYTICAL SAMPLE RESULTS

Polyaromatic Hydrocarbons (PAHs) by EPA 8270D SIM								
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
TP17-3L (A4I0129-32)			Matrix: Soil	E	Batch: 409037	78		
Acenaphthene	ND		0.00914	mg/kg dry	1	09/18/14 00:53	EPA 8270D (SIM)	
Acenaphthylene	ND		0.00914	"	"	"	"	
Anthracene	ND		0.00914	"	"	"	"	
Benz(a)anthracene	ND		0.00914	"	"	"	"	
Benzo(a)pyrene	ND		0.00914	"	"	"	"	
Benzo(b)fluoranthene	ND		0.00914	"	"	"	"	
Benzo(k)fluoranthene	ND		0.00914	"	"	"	"	
Benzo(g,h,i)perylene	ND		0.00914	"	"	"	"	
Chrysene	ND		0.00914	"	"	"	"	
Dibenz(a,h)anthracene	ND		0.00914	"	"	"	"	
Dibenzofuran	ND		0.00914	"	"	"	"	
Fluoranthene	ND		0.00914	"	"	"	"	
Fluorene	ND		0.00914	"	"	"	"	
Indeno(1,2,3-cd)pyrene	ND		0.00914	"	"	"	"	
1-Methylnaphthalene	ND		0.0183	"	"	"	"	
2-Methylnaphthalene	ND		0.0183	"	"	"	"	
Naphthalene	ND		0.0183	"	"	"	"	
Phenanthrene	ND		0.00914	"	"	"	"	
Pyrene	ND		0.00914	"	"	"	"	
Surrogate: 2-Fluorobiphenyl (Surr)		R	ecovery: 82 %	Limits: 44-115 %	"	"	"	
p-Terphenyl-d14 (Surr)			87 %	Limits: 54-127 %	"	"	"	

Apex Laboratories

a
12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anderson Geological	Project: Sadri Property	
PO Box 649	Project Number: 1420.01	Reported:
Wilsonville, OR 97070	Project Manager: Erik Anderson	10/17/14 10:55

ANALYTICAL SAMPLE RESULTS

Polyaromatic Hydrocarbons (PAHs) by EPA 8270D SIM								
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
TP18-0-6T (A4I0129-33)			Matrix: Soil	E	Batch: 409037	'8		
Acenaphthene	ND		0.00603	mg/kg dry	1	09/18/14 01:19	EPA 8270D (SIM)	
Acenaphthylene	ND		0.00603	"	"	"	"	
Anthracene	ND		0.00603	"	"	"	"	
Benz(a)anthracene	ND		0.00603	"	"	"	"	
Benzo(a)pyrene	ND		0.00603	"	"	"	"	
Benzo(b+k)fluoranthene(s)	ND		0.0121	"	"	"	"	Q-26
Benzo(g,h,i)perylene	0.00937		0.00603	"	"	"	"	
Chrysene	ND		0.00603	"	"	"	"	
Dibenz(a,h)anthracene	ND		0.00603	"	"	"	"	
Dibenzofuran	ND		0.00603	"	"	"	"	
Fluoranthene	0.00785		0.00603	"	"	"	"	
Fluorene	ND		0.00603	"	"	"	"	
Indeno(1,2,3-cd)pyrene	0.00657		0.00603	"	"	"	"	
1-Methylnaphthalene	ND		0.0121	"	"	"	"	
2-Methylnaphthalene	ND		0.0121	"	"	"	"	
Naphthalene	0.0200		0.0121	"	"	"	"	
Phenanthrene	0.0101		0.00603	"	"	"	"	
Pyrene	ND		0.00603	"	"	"	"	
Surrogate: 2-Fluorobiphenyl (Surr)		R	ecovery: 74 %	Limits: 44-115 %	"	"	"	
p-Terphenyl-d14 (Surr)			75 %	Limits: 54-127 %	"	"	"	

Apex Laboratories

a

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anderson Geological	Project:	Sadri Property	
PO Box 649	Project Number:	1420.01	Reported:
Wilsonville, OR 97070	Project Manager	Erik Anderson	10/17/14 10:55

ANALYTICAL SAMPLE RESULTS

Polyaromatic Hydrocarbons (PAHs) by EPA 8270D SIM								
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
TP18-6L (A4I0129-34)			Matrix: Soil	E	Batch: 409037	78		
Acenaphthene	ND		0.00796	mg/kg dry	1	09/18/14 01:45	EPA 8270D (SIM)	
Acenaphthylene	ND		0.00796	"	"	"	"	
Anthracene	ND		0.00796	"	"	"	"	
Benz(a)anthracene	ND		0.00796	"	"	"	"	
Benzo(a)pyrene	ND		0.00796	"	"	"	"	
Benzo(b)fluoranthene	ND		0.00796	"	"	"	"	
Benzo(k)fluoranthene	ND		0.00796	"	"	"	"	
Benzo(g,h,i)perylene	ND		0.00796	"	"	"	"	
Chrysene	ND		0.00796	"	"	"	"	
Dibenz(a,h)anthracene	ND		0.00796	"	"	"	"	
Dibenzofuran	ND		0.00796	"	"	"	"	
Fluoranthene	ND		0.00796	"	"	"	"	
Fluorene	ND		0.00796	"	"	"	"	
Indeno(1,2,3-cd)pyrene	ND		0.00796	"	"	"	"	
1-Methylnaphthalene	ND		0.0159	"	"	"	"	
2-Methylnaphthalene	ND		0.0159	"	"	"	"	
Naphthalene	ND		0.0159	"	"	"	"	
Phenanthrene	ND		0.00796	"	"	"	"	
Pyrene	ND		0.00796	"	"	"	"	
Surrogate: 2-Fluorobiphenyl (Surr)		R	Recovery: 76 %	Limits: 44-115 %	"	"	"	
p-Terphenyl-d14 (Surr)			86 %	Limits: 54-127 %	"	"	"	

Apex Laboratories

a

Anderson Geological	Project: Sadri Property	
PO Box 649	Project Number: 1420.01	Reported:
Wilsonville, OR 97070	Project Manager: Erik Anderson	10/17/14 10:55

		То	tal Metals by I	EPA 6020 (IC	PMS)			
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
TP1-0-1T (A4I0129-01)			Matrix: Soil					
Batch: 4090329								
Cadmium	0.366		0.349	mg/kg dry	10	09/13/14 14:59	EPA 6020A	
Lead	10.5		0.349	"	"	"	"	
TP2-0-4T (A4I0129-03)			Matrix: Soil					
Batch: 4090329								
Cadmium	ND		0.383	mg/kg dry	10	09/13/14 15:03	EPA 6020A	
Lead	9.18		0.383		"	"	"	
TP3-0-5T (A4I0129-04)			Matrix: Soil					
Batch: 4090329								
Cadmium	0.495		0.413	mg/kg dry	10	09/13/14 15:08	EPA 6020A	
Lead	20.2		0.413		"	"	"	
TP4-0-3T (A4I0129-06)			Matrix: Soil					
Batch: 4090329								
Cadmium	0.448		0.332	mg/kg dry	10	09/13/14 15:12	EPA 6020A	
Lead	14.8		0.332		"	"	"	
TP6-0-2T (A4l0129-08)			Matrix: Soil					
Batch: 4090329								
Cadmium	0.227		0.227	mg/kg dry	10	09/13/14 15:17	EPA 6020A	
Lead	2.80		0.227		"	"	"	
TP6-5V (A4I0129-09)			Matrix: Soil					
Batch: 4090308								
Cadmium	ND		0.719	mg/kg dry	10	09/12/14 19:33	EPA 6020A	
Lead	75.8		0.719	"	"	"	"	
TP11-0-3T (A4I0129-17)			Matrix: Soil					
Batch: 4090308								
Arsenic	ND		1.23	mg/kg dry	10	09/12/14 19:38	EPA 6020A	
Barium	116		1.23	"	"	"	"	
Cadmium	0.246		0.246	"	"	"	"	
Chromium	28.0		1.23	"	"	"	"	
Lead	1.84		0.246	"	"	"	"	
Mercury	ND		0.0984	"	"	"	"	
Selenium	ND		2.46	"	"	"	"	
Silver	ND		0.246	"	"	"	"	
TP12-0-2T (A4I0129-19)			Matrix: Soil					

Apex Laboratories

a

Anderson Geological	Project: Sadri Property	
PO Box 649	Project Number: 1420.01	Reported:
Wilsonville, OR 97070	Project Manager: Erik Anderson	10/17/14 10:55

		То	tal Metals by I	EPA 6020 (IC	PMS)			
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
TP12-0-2T (A4I0129-19)			Matrix: Soil					
Batch: 4090308								
Arsenic	2.90		2.18	mg/kg dry	10	09/12/14 19:42	EPA 6020A	
Barium	216		2.18	"	"	"	"	
Cadmium	ND		0.436	"	"	"	"	
Chromium	40.0		2.18	"	"	"	"	
Lead	25.3		0.436	"	"	"	"	
Mercury	ND		0.174	"	"	"	"	
Selenium	ND		4.36	"	"	"	"	
Silver	ND		0.436	"	"	"	"	
TP5-3.5L (A4I0129-21)			Matrix: Soil					
Batch: 4090308								
Arsenic	3.49		2.75	mg/kg dry	10	09/12/14 19:47	EPA 6020A	
Barium	67.8		2.75	"	"	"	"	
Cadmium	ND		0.550	"	"	"	"	
Chromium	38.3		2.75	"	"	"	"	
Lead	14.8		0.550	"	"	"	"	
Mercury	ND		0.220	"	"	"	"	
Selenium	ND		5.50	"	"	"	"	
Silver	ND		0.550	"	"	"	"	
TP13-0-2T (A4l0129-23)			Matrix: Soil					
Batch: 4090308								
Barium	97.1		2.01	mg/kg dry	10	09/12/14 20:10	EPA 6020A	
Cadmium	ND		0.402	"	"	"	"	
Lead	15.9		0.402	"	"	"	"	
TP14-0-2.5T (A4l0129-25)			Matrix: Soil					
Batch: 4090308								
Barium	147		2.01	mg/kg dry	10	09/12/14 20:15	EPA 6020A	
Cadmium	ND		0.403		"	"	"	
Lead	22.0		0.403	"	"	"	"	
TP15-3.5L (A4l0129-27)			Matrix: Soil					
Batch: 4090308								
Barium	65.8		2.27	mg/kg dry	10	09/12/14 20:19	EPA 6020A	
Cadmium	ND		0.455	"	"	"	"	
Lead	14.0		0.455	"	"	"	"	
TP16-0-2.5T (A4l0129-29)			Matrix: Soil					

Apex Laboratories

a

Anderson Geological	Project: Sadri Property	
PO Box 649	Project Number: 1420.01	Reported:
Wilsonville, OR 97070	Project Manager: Erik Anderson	10/17/14 10:55

		Tot	tal Metals by I	EPA 6020 (IC	PMS)			
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
TP16-0-2.5T (A4I0129-29)			Matrix: Soil					
Batch: 4090308								
Barium	659		2.25	mg/kg dry	10	09/12/14 20:24	EPA 6020A	
Cadmium	1.01		0.450		"	"	"	
Lead	124		0.450		"	"	"	
TP16-2.5L (A4I0129-30)			Matrix: Soil					
Batch: 4090393								
Arsenic	4.13		2.11	mg/kg dry	10	09/17/14 16:24	EPA 6020A	
Barium	164		2.11		"	"	"	
Cadmium	0.569		0.422		"	"	"	
Chromium	44.9		2.11		"	"	"	
Lead	21.2		0.422		"	"	"	
Mercury	ND		0.169		"	"	"	Q-41
Selenium	ND		4.22		"	"	"	
Silver	ND		0.422		"	"	"	
TP17-0-3T (A4I0129-31)			Matrix: Soil					
Batch: 4090308								
Barium	153		2.45	mg/kg dry	10	09/12/14 20:29	EPA 6020A	
Cadmium	0.589		0.491		"	"	"	
Lead	48.3		0.491		"	"	"	
TP17-3L (A4I0129-32)			Matrix: Soil					
Batch: 4090393								
Arsenic	4.57		2.57	mg/kg dry	10	09/17/14 17:06	EPA 6020A	
Barium	138		2.57		"	"	"	
Cadmium	0.770		0.514	"	"	"	"	
Chromium	49.3		2.57		"	"	"	
Lead	6.29		0.514		"	"	"	
Mercury	ND		0.205		"	"	"	
Selenium	ND		5.14		"	"	"	
Silver	ND		0.514		"	"	"	
TP18-0-6T (A4I0129-33)			Matrix: Soil					
Batch: 4090308								
Arsenic	5.29		2.01	mg/kg dry	10	09/12/14 20:33	EPA 6020A	
Barium	57.4		2.01	"	"	"	"	
Cadmium	ND		0.401	"	"	"	"	
Chromium	46.4		2.01	"	"	"	"	

Apex Laboratories

a

Anderson Geological	Project: Sadri Property	
PO Box 649	Project Number: 1420.01	Reported:
Wilsonville, OR 97070	Project Manager: Erik Anderson	10/17/14 10:55

		То	tal Metals by I	EPA 6020 (IC	PMS)			
	D14	MDI	Reporting				M-th 1	N-4
	Kesuit	MDL	Limit	Units	Dilution	Date Analyzed	Method	INOTES
1P10-0-01 (A410129-33)			watrix: Soll					
Lead	7.50		0.401	mg/kg dry 	10	"	EPA 6020A	
Mercury	ND		0.160	"			"	
Selenium	ND		4.01	"	"	"	"	
Silver	ND		0.401	"	"	"	"	
TP19-0-7T (A4I0129-35)			Matrix: Soil					
Batch: 4090308								
Arsenic	3.00		1.29	mg/kg dry	10	09/12/14 20:38	EPA 6020A	
Barium	93.2		1.29	"	"	"	"	
Cadmium	0.621		0.259	"	"	"	"	
Chromium	24.5		1.29	"	"	"	"	
Lead	78.1		0.259	"	"	"	"	
Mercury	ND		0.103	"	"	"	"	
Selenium	ND		2.59	"	"	"	"	
Silver	ND		0.259	"	"	"	"	
TP19-7L (A4l0129-36)			Matrix: Soil					
Batch: 4090393								
Arsenic	2.60		1.59	mg/kg dry	10	09/17/14 17:10	EPA 6020A	
Barium	65.4		1.59	"	"	"	"	
Cadmium	0.603		0.317	"	"	"	"	
Chromium	54.8		1.59	"	"	"	"	
Lead	5.41		0.317	"	"	"	"	
Mercury	ND		0.127	"	"	"	"	
Selenium	ND		3.17	"	"	"	"	
Silver	ND		0.317	"	"	"	"	
TP20-4-8T (A4l0129-37)			Matrix: Soil					
Batch: 4090308								
Arsenic	3.96		1.39	mg/kg dry	10	09/12/14 20:42	EPA 6020A	
Barium	135		1.39	"	"	"	"	
Cadmium	0.362		0.279	"	"	"	"	
Chromium	56.4		1.39	"	"	"	"	
Lead	159		0.279	"	"	"	"	
Mercury	0.227		0.112	"	"	"	"	Q-41
Selenium	ND		2.79	"	"	"	"	
Silver	ND		0.279	"	"	"	"	
IP-3 (A4I0129-40)			Matrix: Soil					

Apex Laboratories

a

Anderson Geological	Project: Sadri Property	
PO Box 649	Project Number: 1420.01	Reported:
Wilsonville, OR 97070	Project Manager: Erik Anderson	10/17/14 10:55

Total Metals by EPA 6020 (ICPMS)										
			Reporting							
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes		
IP-3 (A4I0129-40)			Matrix: Soil							
Batch: 4090308										
Lead	29.5		0.657	mg/kg dry	10	09/12/14 20:56	EPA 6020A			
IP-4 (A4I0129-41)			Matrix: Soil							
Batch: 4090308										
Lead	13.6		0.673	mg/kg dry	10	09/12/14 21:01	EPA 6020A			

Apex Laboratories

a

Darwin Thomas, Business Development Director

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anderson Geological	Project: Sadri Property	
PO Box 649	Project Number: 1420.01	Reported:
Wilsonville, OR 97070	Project Manager: Erik Anderson	10/17/14 10:55

ANALYTICAL SAMPLE RESULTS

Percent Dry Weight										
			Reportin	ıg						
Analyte	Result	MDL	Limit		Units	Dilution	Date Analyzed	Method	Notes	
TP1-0-1T (A4I0129-01)			Matrix: S	oil	Ba	atch: 40901	74			
% Solids	61.4		1.00		% by Weight	1	09/09/14 09:52	EPA 8000C		
TP2-0-4T (A4I0129-03)			Matrix: S	oil	Ва	atch: 40901	74			
% Solids	53.6		1.00		% by Weight	1	09/09/14 09:52	EPA 8000C		
TP3-0-5T (A4I0129-04)			Matrix: S	oil	Ba	atch: 40901	74			
% Solids	52.1		1.00		% by Weight	1	09/09/14 09:52	EPA 8000C		
TP3-5L (A4I0129-05)			Matrix: S	oil	Ва	atch: 40903	95			
% Solids	49.9		1.00		% by Weight	1	09/17/14 10:15	EPA 8000C		
TP4-0-3T (A4l0129-06)			Matrix: S	oil	Ва	atch: 40901	74			
% Solids	58.5		1.00		% by Weight	1	09/09/14 09:52	EPA 8000C		
TP4-3L (A4I0129-07)			Matrix: S	oil	Ва	atch: 40903	66			
% Solids	35.9		1.00		% by Weight	1	09/16/14 10:01	EPA 8000C		
TP6-0-2T (A4l0129-08)			Matrix: S	oil	Ва	atch: 40901	74			
% Solids	85.0		1.00		% by Weight	1	09/09/14 09:52	EPA 8000C		
TP6-5V (A4I0129-09)			Matrix: S	oil	Ва	atch: 40901				
% Solids	29.4		1.00		% by Weight	1	09/09/14 09:52	EPA 8000C		
TP7-0-3T (A4I0129-10)			Matrix: S	oil	Ва	atch: 40903				
% Solids	36.4		1.00		% by Weight	1	09/16/14 10:01	EPA 8000C		
TP7-3L (A4I0129-11)			Matrix: S	oil	Ва	atch: 40903	66			
% Solids	45.7		1.00		% by Weight	1	09/16/14 10:01	EPA 8000C		
TP8-0-2.5T (A4l0129-12)			Matrix: S	oil	Ва	atch: 40903	66			
% Solids	80.5		1.00		% by Weight	1	09/16/14 10:01	EPA 8000C		
TP8-2.5L (A4I0129-13)			Matrix: S	oil	Ва	atch: 40903	66			
% Solids	84.9		1.00		% by Weight	1	09/16/14 10:01	EPA 8000C		
TP10-6L (A4I0129-16)			Matrix: S	oil	Ва	atch: 40903	66			
% Solids	39.5		1.00		% by Weight	1	09/16/14 10:01	EPA 8000C		
TP11-0-3T (A4I0129-17)			Matrix: S	oil	Ва	atch: 40901	74			
% Solids	84.9		1.00		% by Weight	1	09/09/14 09:52	EPA 8000C		
TP12-0-2T (A4I0129-19)			Matrix: S	oil	Ва	atch: 40901	74			
% Solids	50.1		1.00		% by Weight	1	09/09/14 09:52	EPA 8000C		
TP12-4L (A4I0129-20)			Matrix: S	oil	Ва	atch: 40903	66			
% Solids	46.6		1.00		% by Weight	1	09/16/14 10:01	EPA 8000C		

Apex Laboratories

a

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anderson Geological	Project: Sadri Property	
PO Box 649	Project Number: 1420.01	Reported:
Wilsonville, OR 97070	Project Manager: Erik Anderson	10/17/14 10:55

ANALYTICAL SAMPLE RESULTS

Percent Dry Weight										
			Reportin	g						
Analyte	Result	MDL	Limit	Ur	its	Dilution	Date Analyzed	Method	Notes	
TP5-3.5L (A4I0129-21)			Matrix: So	oil	B	atch: 409017	74			
% Solids	39.3		1.00	% by V	Neight	1	09/09/14 09:52	EPA 8000C		
TP13-0-2T (A4I0129-23)			Matrix: So	oil	B	atch: 409017	74			
% Solids	54.3		1.00	% by V	Neight	1	09/09/14 09:52	EPA 8000C		
TP14-0-2.5T (A4I0129-25)			Matrix: So	oil	B	atch: 409017	74			
% Solids	52.8		1.00	% by V	Neight	1	09/09/14 09:52	EPA 8000C		
TP14-2.5L (A4I0129-26)			Matrix: So	oil	B	atch: 409036	36			
% Solids	31.3		1.00	% by V	Neight	1	09/16/14 10:01	EPA 8000C		
TP15-3.5L (A4I0129-27)			Matrix: So	oil	B	atch: 409017	74			
% Solids	45.8		1.00	% by V	Neight	1	09/09/14 09:52	EPA 8000C		
TP15-5V (A4I0129-28)			Matrix: So	oil	B	atch: 409036	56			
% Solids	42.4		1.00	% by V	Neight	1	09/16/14 10:01	EPA 8000C		
TP16-0-2.5T (A4I0129-29)			Matrix: So	oil	B	atch: 409017	74			
% Solids	46.0		1.00	% by V	Neight	1	09/09/14 09:52	EPA 8000C		
TP16-2.5L (A4I0129-30)			Matrix: So	oil	B	atch: 409036				
% Solids	49.1		1.00	% by V	Neight	1	09/16/14 10:01	EPA 8000C		
TP17-0-3T (A4l0129-31)			Matrix: So	oil	B	atch: 409017	74			
% Solids	39.4		1.00	% by V	Neight	1	09/09/14 09:52	EPA 8000C		
TP17-3L (A4I0129-32)			Matrix: So	oil	B	atch: 409036	66			
% Solids	41.6		1.00	% by V	Neight	1	09/16/14 10:01	EPA 8000C		
TP18-0-6T (A4l0129-33)			Matrix: So	oil	B	atch: 409017	74			
% Solids	55.4		1.00	% by V	Neight	1	09/09/14 09:52	EPA 8000C		
TP18-6L (A4I0129-34)			Matrix: So	oil	В	atch: 409036	56			
% Solids	48.3		1.00	% by V	Neight	1	09/16/14 10:01	EPA 8000C		
TP19-0-7T (A4l0129-35)			Matrix: So	oil	B	atch: 409017	74			
% Solids	79.2		1.00	% by V	Neight	1	09/09/14 09:52	EPA 8000C		
TP19-7L (A4l0129-36)			Matrix: So	oil	B	atch: 409039	95			
% Solids	61.4		1.00	% by V	Neight	1	09/17/14 10:15	EPA 8000C		
TP20-4-8T (A4I0129-37)			Matrix: So	oil	В	atch: 409017	74			
% Solids	79.7		1.00	% by V	Neight	1	09/09/14 09:52	EPA 8000C		
IP-3 (A4I0129-40)			Matrix: So	oil	В	atch: 409017	74			

Apex Laboratories

a

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anderson Geological	Project:	Sadri Property	
PO Box 649	Project Number:	1420.01	Reported:
Wilsonville, OR 97070	Project Manager:	Erik Anderson	10/17/14 10:55

ANALYTICAL SAMPLE RESULTS

Percent Dry Weight										
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Date Analyzed	Method	Notes		
IP-3 (A4I0129-40)			Matrix: Soil	Ва	atch: 409017	74				
% Solids	30.7		1.00	% by Weight	1	09/09/14 09:52	EPA 8000C			
IP-4 (A4I0129-41)			Matrix: Soil	Ва	atch: 409017					
% Solids	32.3		1.00	% by Weight	1	09/09/14 09:52	EPA 8000C			

Apex Laboratories

au

Darwin Thomas, Business Development Director

Anderson Geological	Project:	Sadri Property	
PO Box 649	Project Number:	1420.01	Reported:
Wilsonville, OR 97070	Project Manager:	Erik Anderson	10/17/14 10:55

QUALITY CONTROL (QC) SAMPLE RESULTS

	Die	esel and (Oil Hydroca	arbons by N	WTP	I-Dx with S	Silica Gel	Cleanup				
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 4090299 - EPA 3546	6 (Fuels) w/	Silica Ge	I+Acid (NW	/TPH)			Soi	l				
Blank (4090299-BLK1)			/11/14 14:26	Analyzed: 09/12/14 02:10								
NWTPH-Dx/SG												
Diesel	ND		25.0	mg/kg wet	1							
Oil	ND		50.0	"	"							
Surr: o-Terphenyl (Surr)		Rec	overy: 91 %	Limits: 50-1	50 %	Dil	ution: 1x					
LCS (4090299-BS1)				Prepa	ared: 09/	/11/14 14:26	Analyzed:	09/12/14 02	:34			
NWTPH-Dx/SG												
Diesel	102		25.0	mg/kg wet	1	125		82	76-115%			
Surr: o-Terphenyl (Surr)		Rec	overy: 93 %	Limits: 50-1	50 %	Dili	ution: 1x					
Duplicate (4090299-DUP1)	Prepared: 09/11/14 14:26 Analyzed: 09/12/14 03:22											
QC Source Sample: TP1-0-1T (A4 NWTPH-Dx/SG	H0129-01)											
Diesel	ND		29.3	mg/kg dry	1		20.7			***	30%	
Oil	ND		58.6	"	"		38.3			***	30%	
Surr: o-Terphenyl (Surr)		Rec	overy: 92 %	Limits: 50-1	50 %	Dili	ution: 1x					
Duplicate (4090299-DUP2)				Prepa	ared: 09/	/11/14 14:26	Analyzed:	09/12/14 12	:45			
QC Source Sample: IP-4 (A4I0129 NWTPH-Dx/SG	9-41)											
Diesel	ND		60.6	mg/kg dry	1		ND				30%	
Oil	137		121	"	"		140			2	30%	
Surr: o-Terphenyl (Surr)		Reco	wery: 102 %	Limits: 50-1	50 %	Dili	ution: 1x					
Batch 4090403 - EPA 3546	6 (Fuels) w/	Silica Ge	I+Acid (NW	(TPH)			Soi	I				
Blank (4090403-BLK1)				Prepa	ared: 09/	/16/14 15:06	Analyzed:	09/16/14 20	:13			
NWTPH-Dx/SG												
Diesel	ND		25.0	mg/kg wet	1							
Oil	ND		50.0	"	"							
Surr: o-Terphenyl (Surr)		Rec	overy: 95 %	Limits: 50-1	50 %	Dili	ution: 1x					
LCS (4090403-BS1)				Prepa	ared: 09/	/16/14 15:06	Analyzed:	09/16/14 20	:36			
NWTPH-Dx/SG												

Apex Laboratories

a

Apex	Labs
------	------

Anderson Geological PO Box 649			Pr	Project: oject Number:	Sadri 1420.0	Property					Report	ed:
Wilsonville, OR 97070			Pro	ject Manager:	Erik A	nderson					10/17/14	10:55
		QU	JALITY C	ONTROL (QC) S	SAMPLE R	ESULTS	5				
Diesel and Oil Hydrocarbons by NWTPH-Dx with Silica Gel Cleanup												
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 4090403 - EPA 3546 (Fuels) w/Silica Gel+Acid (NWTPH) Soil												
LCS (4090403-BS1)				Prep	ared: 09	/16/14 15:06	Analyzed:	09/16/14 20):36			
Diesel	115		25.0	mg/kg wet	1	125		92	76-115%			
Surr: o-Terphenyl (Surr)		Rec	covery: 92 %	Limits: 50-1	50 %	Dilu	tion: 1x					
Duplicate (4090403-DUP1)				Prep	ared: 09	/16/14 15:06	Analyzed:	09/16/14 2	3:25			
QC Source Sample: TP17-3L (A4I NWTPH-Dx/SG	0129-32)											
Diesel	ND		56.0	mg/kg dry	1		ND				30%	
Oil	ND		112	"	"		ND				30%	
Surr: o-Terphenyl (Surr)		Rec	covery: 92 %	Limits: 50-1	50 %	Dilu	ution: 1x					

Apex Laboratories

u)au

Anderson Geological	Project: Sadri Property	
PO Box 649	Project Number: 1420.01	Reported:
Wilsonville, OR 97070	Project Manager: Erik Anderson	10/17/14 10:55

QUALITY CONTROL (QC) SAMPLE RESULTS

Polyaromatic Hydrocarbons (PAHs) by EPA 8270D SIM												
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 4090185 - EPA 3546							Soil					
Blank (4090185-BLK1)				Prepa	ared: 09/	09/14 08:34	Analyzed:	09/10/14 12	:25			
EPA 8270D (SIM)												
Acenaphthene	ND		0.00333	mg/kg wet	1							
Acenaphthylene	ND		0.00333	"	"							
Anthracene	ND		0.00333	"	"							
Benz(a)anthracene	ND		0.00333	"	"							
Benzo(a)pyrene	ND		0.00333	"	"							
Benzo(b)fluoranthene	ND		0.00333	"	"							
Benzo(k)fluoranthene	ND		0.00333	"	"							
Benzo(b+k)fluoranthene(s)	ND		0.00667	"	"							
Benzo(g,h,i)perylene	ND		0.00333	"	"							
Chrysene	ND		0.00333	"	"							
Dibenz(a,h)anthracene	ND		0.00333	"	"							
Dibenzofuran	ND		0.00333	"	"							
Fluoranthene	ND		0.00333	"	"							
Fluorene	ND		0.00333	"	"							
Indeno(1,2,3-cd)pyrene	ND		0.00333	"	"							
1-Methylnaphthalene	ND		0.00667	"	"							
2-Methylnaphthalene	ND		0.00667	"	"							
Naphthalene	ND		0.00667	"	"							
Phenanthrene	ND		0.00333	"	"							
Pyrene	ND		0.00333	"	"							
Surr: 2-Fluorobiphenyl (Surr) p-Terphenyl-d14 (Surr)		Rec	covery: 67 % 93 %	Limits: 44-1 54-1	15 % 27 %	Dili	ution: 1x "					
LCS (4090185-BS1)				Prepa	ared: 09/	09/14 08:34	Analyzed:	09/10/14 12	:52			
EPA 8270D (SIM)												
Acenaphthene	0.626		0.00400	mg/kg wet	1	0.800		78	40-122%			
Acenaphthylene	0.631		0.00400	"	"	"		79	32-132%			
Anthracene	0.648		0.00400	"	"	"		81	47-123%			
Benz(a)anthracene	0.631		0.00400	"	"	"		79	49-126%			
Benzo(a)pyrene	0.662		0.00400	"	"	"		83	45-129%			
Benzo(b)fluoranthene	0.694		0.00400	"	"	"		87	45-132%			

Apex Laboratories

a

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anderson Geological	Project:	Sadri Property	
PO Box 649	Project Number:	1420.01	Reported:
Wilsonville, OR 97070	Project Manager:	Erik Anderson	10/17/14 10:55

QUALITY CONTROL (QC) SAMPLE RESULTS

		Polya	aromatic Hy	drocarbon	s (PAH	ls) by EPA	8270D SI	М				
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 4090185 - EPA 3546	5						Soil					
LCS (4090185-BS1)				Prepa	red: 09/	09/14 08:34	Analyzed: (09/10/14 12	2:52			
Benzo(k)fluoranthene	0.652		0.00400	"	"	"		81	47-132%			
Benzo(b+k)fluoranthene(s)	1.35		0.00800	"	"	1.60		84	45-132%			
Benzo(g,h,i)perylene	0.639		0.00400	"	"	0.800		80	43-134%			
Chrysene	0.642		0.00400	"	"	"		80	50-124%			
Dibenz(a,h)anthracene	0.661		0.00400	"	"	"		83	45-134%			
Dibenzofuran	0.610		0.00400	"	"	"		76	44-120%			
Fluoranthene	0.686		0.00400	"	"	"		86	50-127%			
Fluorene	0.620		0.00400	"	"	"		77	43-125%			
Indeno(1,2,3-cd)pyrene	0.614		0.00400	"	"	"		77	45-133%			
1-Methylnaphthalene	0.604		0.00800	"	"	"		75	40-120%			
2-Methylnaphthalene	0.609		0.00800	"	"	"		76	38-122%			
Naphthalene	0.574		0.00800	"	"	"		72	35-123%			
Phenanthrene	0.623		0.00400	"	"	"		78	50-121%			
Pyrene	0.685		0.00400	"	"	"		86	47-127%			
Surr: 2-Fluorobiphenyl (Surr) p-Terphenyl-d14 (Surr)		Red	covery: 71 % 83 %	Limits: 44-11 54-12	15 % 27 %	Dili	ution: 1x "					
Duplicate (4090185-DUP1)				Prepa	red: 09/	09/14 08:34	Analyzed: (09/10/14 1	3:44			
QC Source Sample: TP1-0-1T (A4	10129-01)											
EPA 8270D (SIM)												
Acenaphthene	ND		0.00550	mg/kg dry	1		ND				30%	
Acenaphthylene	ND		0.00550	"	"		ND				30%	
Anthracene	ND		0.00550	"	"		ND				30%	
Benz(a)anthracene	0.00645		0.00550	"	"		0.00441			37	30%	Q-05
Benzo(a)pyrene	0.00779		0.00550	"	"		0.00421			60	30%	Q-05
Benzo(b+k)fluoranthene(s)	0.0140		0.0110	"	"		0.00875			46	30%	Q-05, Q-26
Benzo(g,h,i)perylene	0.00807		0.00550	"	"		0.00494			48	30%	Q-05
Chrysene	0.00926		0.00550	"	"		0.00548			51	30%	Q-05
Dibenz(a,h)anthracene	ND		0.00550	"	"		ND				30%	
Dibenzofuran	ND		0.00550	"	"		ND				30%	
Fluoranthene	0.0318		0.00550	"	"		0.00926			110	30%	
Fluorene	ND		0.00550	"	"		ND				30%	

Apex Laboratories

a

Anderson Geological	Project: Sadri Propert	y
PO Box 649	Project Number: 1420.01	Reported:
Wilsonville, OR 97070	Project Manager: Erik Anderson	10/17/14 10:55

QUALITY CONTROL (QC) SAMPLE RESULTS

Polyaromatic Hydrocarbons (PAHs) by EPA 8270D SIM												
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 4090185 - EPA 354	16						Soil					
Duplicate (4090185-DUP1)				Prepa	ured: 09/	09/14 08:34	Analyzed: (9/10/14 13	3:44			
QC Source Sample: TP1-0-1T (A	4I0129-01)											
Indeno(1,2,3-cd)pyrene	0.00740		0.00550	"	"		0.00449			49	30%	Q-05
1-Methylnaphthalene	ND		0.0110	"	"		ND				30%	
2-Methylnaphthalene	ND		0.0110	"	"		ND				30%	
Naphthalene	0.0405		0.0110	"	"		0.00988			122	30%	
Phenanthrene	0.0401		0.00550	"	"		0.00931			125	30%	
Pyrene	0.0361		0.00550	"	"		0.00814			126	30%	
Surr: 2-Fluorobiphenyl (Surr)		Rec	covery: 71 %	Limits: 44-1	15%	Dilı	ution: 1x					
p-Terphenyl-d14 (Surr)			79 %	54-12	27 %		"					
Matrix Spike (4090185-MS1)				Prepa	ured: 09/	09/14 08:34	Analyzed: (9/10/14 19	9:20			
QC Source Sample: TP17-0-3T (A4I0129-31)											
EPA 8270D (SIM)												
Acenaphthene	1.60		0.0490	mg/kg dry	5	1.96	ND	82	40-122%			
Acenaphthylene	1.64		0.0490	"	"	"	0.0537	81	32-132%			
Anthracene	1.62		0.0490	"	"	"	0.0326	81	47-123%			
Benz(a)anthracene	1.57		0.0490	"	"	"	0.0874	75	49-126%			
Benzo(a)pyrene	1.70		0.0490	"	"	"	0.125	80	45-129%			
Benzo(b)fluoranthene	1.69		0.0490	"	"	"	0.262	73	45-132%			
Benzo(k)fluoranthene	1.77		0.0490	"	"	"	0.264	77	47-132%			
Benzo(b+k)fluoranthene(s)	3.49		0.0979	"	"	3.92	0.264	82	45-132%			
Benzo(g,h,i)perylene	1.64		0.0490	"	"	1.96	0.323	67	43-134%			
Chrysene	1.69		0.0490	"	"	"	0.144	79	50-124%			
Dibenz(a,h)anthracene	1.58		0.0490	"	"	"	ND	81	45-134%			
Dibenzofuran	1.57		0.0490	"	"	"	0.0383	78	44-120%			
Fluoranthene	1.84		0.0490	"	"	"	0.361	75	50-127%			
Fluorene	1.57		0.0490	"	"	"	ND	80	43-125%			
Indeno(1,2,3-cd)pyrene	1.60		0.0490	"	"	"	0.240	70	45-133%			
1-Methylnaphthalene	1.52		0.0979	"	"	"	ND	77	40-120%			
2-Methylnaphthalene	1.51		0.0979	"	"	"	ND	77	38-122%			
Naphthalene	1.91		0.0979	"	"	"	0.395	77	35-123%			

Apex Laboratories

a

Anderson Geological	Project:	Sadri Property	
PO Box 649	Project Number:	1420.01	Reported:
Wilsonville, OR 97070	Project Manager:	Erik Anderson	10/17/14 10:55

QUALITY CONTROL (QC) SAMPLE RESULTS

	Polyaromatic Hydrocarbons (PAHs) by EPA 8270D SIM											
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 4090185 - EPA 3540	6						Soi	l				
Matrix Spike (4090185-MS1)				Prep	ared: 09/	/09/14 08:34	Analyzed:	09/10/14 1	9:20			
QC Source Sample: TP17-0-3T (A	410129-31)											
Phenanthrene	1.74		0.0490	mg/kg dry	"	"	0.343	71	50-121%			
Pyrene	1.83		0.0490	"	"	"	0.332	76	47-127%			
Surr: 2-Fluorobiphenyl (Surr)		Rec	covery: 75 %	Limits: 44-	115 %	Dilı	ution: 5x					
p-Terphenyl-d14 (Surr)			86 %	54-1	27 %		"					

Apex Laboratories

a

Darwin Thomas, Business Development Director

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anderson Geological	Project: Sadri Property	
PO Box 649	Project Number: 1420.01	Reported:
Wilsonville, OR 97070	Project Manager: Erik Anderson	10/17/14 10:55

QUALITY CONTROL (QC) SAMPLE RESULTS

Polyaromatic Hydrocarbons (PAHs) by EPA 8270D SIM												
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 4090378 - EPA 3546							Soi					
Blank (4090378-BLK1)				Prep	ared: 09/	16/14 07:52	Analyzed:	09/17/14 1	9:09			
EPA 8270D (SIM)												
Acenaphthene	ND		0.00308	mg/kg wet	1							
Acenaphthylene	ND		0.00308	"	"							
Anthracene	ND		0.00308	"	"							
Benz(a)anthracene	ND		0.00308	"	"							
Benzo(a)pyrene	ND		0.00308	"	"							
Benzo(b)fluoranthene	ND		0.00308	"	"							
Benzo(k)fluoranthene	ND		0.00308	"	"							
Benzo(b+k)fluoranthene(s)	ND		0.00615	"	"							
Benzo(g,h,i)perylene	ND		0.00308	"	"							
Chrysene	ND		0.00308	"	"							
Dibenz(a,h)anthracene	ND		0.00308	"	"							
Dibenzofuran	ND		0.00308	"	"							
Fluoranthene	ND		0.00308	"	"							
Fluorene	ND		0.00308	"	"							
Indeno(1,2,3-cd)pyrene	ND		0.00308	"	"							
1-Methylnaphthalene	ND		0.00615	"	"							
2-Methylnaphthalene	ND		0.00615	"	"							
Naphthalene	ND		0.00615	"	"							
Phenanthrene	ND		0.00308	"	"							
Pyrene	ND		0.00308	"	"							
Surr: 2-Fluorobiphenyl (Surr) p-Terphenyl-d14 (Surr)		Rec	covery: 86 % 97 %	Limits: 44-1 54-1	15 % 27 %	Dili	ution: 1x "					
LCS (4090378-BS1)				Prep	ared: 09/	16/14 07:52	Analyzed:	09/17/14 1	9:36			
EPA 8270D (SIM)				· r								
Acenaphthene	0.781		0.00400	mg/kg wet	1	0.800		98	40-122%			
Acenaphthylene	0.782		0.00400	"	"	"		98	32-132%			
Anthracene	0.837		0.00400	"	"	"		105	47-123%			
Benz(a)anthracene	0.783		0.00400	"	"	"		98	49-126%			
Benzo(a)pyrene	0.884		0.00400	"	"	"		110	45-129%			
Benzo(b)fluoranthene	0.804		0.00400	"	"	"		100	45-132%			

Apex Laboratories

a

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anderson Geological	Project: Sad	dri Property	
PO Box 649	Project Number: 142	20.01	Reported:
Wilsonville, OR 97070	Project Manager: Eril	ik Anderson	10/17/14 10:55

QUALITY CONTROL (QC) SAMPLE RESULTS

	Polyaromatic Hydrocarbons (PAHs) by EPA 8270D SIM											
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 4090378 - EPA 3546							Soil					
LCS (4090378-BS1)				Prepa	ured: 09/	16/14 07:52	Analyzed: (9/17/14 19	9:36			
Benzo(k)fluoranthene	0.831		0.00400	"	"	"		104	47-132%			
Benzo(b+k)fluoranthene(s)	1.62		0.00800	"	"	1.60		101	45-132%			
Benzo(g,h,i)perylene	0.740		0.00400	"	"	0.800		93	43-134%			
Chrysene	0.783		0.00400	"	"	"		98	50-124%			
Dibenz(a,h)anthracene	0.818		0.00400	"	"	"		102	45-134%			
Dibenzofuran	0.808		0.00400	"	"	"		101	44-120%			
Fluoranthene	0.818		0.00400	"	"	"		102	50-127%			
Fluorene	0.851		0.00400	"	"	"		106	43-125%			
Indeno(1,2,3-cd)pyrene	0.757		0.00400	"	"	"		95	45-133%			
1-Methylnaphthalene	0.767		0.00800	"	"	"		96	40-120%			
2-Methylnaphthalene	0.808		0.00800	"	"	"		101	38-122%			
Naphthalene	0.754		0.00800	"	"	"		94	35-123%			
Phenanthrene	0.807		0.00400	"	"	"		101	50-121%			
Pyrene	0.810		0.00400	"	"	"		101	47-127%			
Surr: 2-Fluorobiphenyl (Surr) p-Terphenyl-d14 (Surr)		Rec	overy: 87 % 90 %	Limits: 44-1. 54-12	15 % 27 %	Dili	ution: 1x "					
Duplicate (4090378-DUP1)				Prepa	ured: 09/	16/14 07:52	Analyzed: ()9/17/14 20	0:29			
QC Source Sample: TP4-3L (A4I01	29-07)											
EPA 8270D (SIM)												
Acenaphthene	ND		0.0109	mg/kg dry	1		ND				30%	
Acenaphthylene	ND		0.0109	"	"		0.0151			***	30%	
Anthracene	ND		0.0109	"	"		ND				30%	
Benz(a)anthracene	ND		0.0109	"	"		ND				30%	
Benzo(a)pyrene	ND		0.0109	"	"		ND				30%	
Benzo(b+k)fluoranthene(s)	ND		0.0219	"	"		ND				30%	Q-26
Benzo(g,h,i)perylene	ND		0.0109	"	"		ND				30%	
Chrysene	ND		0.0109	"	"		ND				30%	
Dibenz(a,h)anthracene	ND		0.0109	"	"		ND				30%	
Dibenzofuran	ND		0.0109	"	"		ND				30%	
Fluoranthene	0.0170		0.0109	"	"		0.00637			91	30%	Q-05
Fluorene	0.0180		0.0109	"	"		0.00712			86	30%	Q-05

Apex Laboratories

a

Anderson Geological	Project:	Sadri Property	
PO Box 649	Project Number:	1420.01	Reported:
Wilsonville, OR 97070	Project Manager:	Erik Anderson	10/17/14 10:55

QUALITY CONTROL (QC) SAMPLE RESULTS

		Polya	aromatic Hy	/drocarbon	s (PAH	s) by EPA	8270D SI	М				
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 4090378 - EPA 354	6						Soil					
Duplicate (4090378-DUP1)				Prepa	ared: 09/	16/14 07:52	Analyzed: (09/17/14 2	0:29			
QC Source Sample: TP4-3L (A4I	0129-07)											
Indeno(1,2,3-cd)pyrene	ND		0.0109	"	"		ND				30%	
1-Methylnaphthalene	ND		0.0219	"	"		ND				30%	
2-Methylnaphthalene	ND		0.0219	"	"		ND				30%	
Naphthalene	0.0259		0.0219	"	"		0.0109				30%	
Phenanthrene	0.0326		0.0109	"	"		0.0144			78	30%	Q-05
Pyrene	0.0157		0.0109	"	"		0.00687			78	30%	Q-05
Surr: 2-Fluorobiphenyl (Surr)		Rec	overy: 81 %	Limits: 44-1.	15%	Dilı	ution: 1x "					
p-terphenyi-a14 (Surr)			05 70	54-12	2/ 70							
Matrix Spike (4090378-MS1)				Prepa	ared: 09/	16/14 07:52	Analyzed: (09/18/14 0	2:12			
QC Source Sample: TP18-6L (A4 EPA 8270D (SIM)	410129-34)											
Acenaphthene	1.33		0.00709	mg/kg dry	1	1.42	ND	93	40-122%			
Acenaphthylene	1.32		0.00709	"	"	"	ND	93	32-132%			
Anthracene	1.41		0.00709	"	"	"	ND	100	47-123%			
Benz(a)anthracene	1.35		0.00709	"	"	"	ND	95	49-126%			
Benzo(a)pyrene	1.51		0.00709	"	"	"	ND	106	45-129%			
Benzo(b)fluoranthene	1.43		0.00709	"	"	"	ND	101	45-132%			
Benzo(k)fluoranthene	1.39		0.00709	"	"	"	ND	98	47-132%			
Benzo(b+k)fluoranthene(s)	2.78		0.0142	"	"	2.84	ND	98	45-132%			
Benzo(g,h,i)perylene	1.12		0.00709	"	"	1.42	ND	79	43-134%			
Chrysene	1.31		0.00709	"	"	"	ND	93	50-124%			
Dibenz(a,h)anthracene	1.38		0.00709	"	"	"	ND	97	45-134%			
Dibenzofuran	1.40		0.00709	"	"	"	ND	99	44-120%			
Fluoranthene	1.38		0.00709	"	"	"	ND	97	50-127%			
Fluorene	1.47		0.00709	"	"	"	ND	104	43-125%			
Indeno(1,2,3-cd)pyrene	1.24		0.00709	"	"	"	ND	88	45-133%			
1-Methylnaphthalene	1.29		0.0142	"	"	"	ND	91	40-120%			
2-Methylnaphthalene	1.34		0.0142	"	"	"	ND	95	38-122%			
Naphthalene	1.25		0.0142		"		ND	88	35-123%			

Apex Laboratories

a

Anderson Geological	Project:	Sadri Property	
PO Box 649	Project Number:	1420.01	Reported:
Wilsonville, OR 97070	Project Manager:	Erik Anderson	10/17/14 10:55

QUALITY CONTROL (QC) SAMPLE RESULTS

Polyaromatic Hydrocarbons (PAHs) by EPA 8270D SIM												
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 4090378 - EPA 3546	6						Soi	l				
Matrix Spike (4090378-MS1)				Prep	ared: 09	/16/14 07:52	Analyzed:	09/18/14 0	2:12			
QC Source Sample: TP18-6L (A4l	0129-34)											
Phenanthrene	1.36		0.00709	mg/kg dry	"	"	ND	96	50-121%			
Pyrene	1.37		0.00709	"	"	"	ND	97	47-127%			
Surr: 2-Fluorobiphenyl (Surr)		Rec	covery: 78 %	Limits: 44-	115 %	Dilı	tion: 1x					
p-Terphenyl-d14 (Surr)			82 %	54-1	27 %		"					

Apex Laboratories

a

Darwin Thomas, Business Development Director

Anderson Geological	Project: Sadri Property	
PO Box 649	Project Number: 1420.01	Reported:
Wilsonville, OR 97070	Project Manager: Erik Anderson	10/17/14 10:55

QUALITY CONTROL (QC) SAMPLE RESULTS

Total Metals by EPA 6020 (ICPMS)												
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 4090308 - EPA 3	051A						Soi	I				
Blank (4090308-BLK1)				Prepa	ared: 09/1	12/14 08:21	Analyzed:	09/12/14 1	9:24			
EPA 6020A							-					
Arsenic	ND		1.00	mg/kg wet	10							
Barium	ND		1.00	"	"							
Cadmium	ND		0.200	"	"							
Chromium	ND		1.00	"	"							
Lead	ND		0.200	"	"							
Mercury	ND		0.0800	"	"							
Selenium	ND		2.00	"	"							B-02
Silver	ND		0.200	"	"							
LCS (4090308-BS1)				Prepa	ared: 09/1	12/14 08:21	Analyzed:	09/12/14 1	9:29			
EPA 6020A												
Arsenic	51.6		1.00	mg/kg wet	10	50.0		103	80-120%			
Barium	50.7		1.00	"	"	"		101	"			
Cadmium	51.7		0.200	"	"	"		103	"			
Chromium	51.5		1.00	"	"	"		103	"			
Lead	53.5		0.200	"	"	"		107	"			
Mercury	0.981		0.0800	"	"	1.00		98	"			Q-41
Selenium	26.5		2.00	"	"	25.0		106	"			B-02
Silver	26.0		0.200	"	"	"		104	"			
Duplicate (4090308-DUP1)				Prepa	ared: 09/1	12/14 08:21	Analyzed:	09/12/14 2	0:01			
QC Source Sample: TP5-3.5L	(A4I0129-21)											
EPA 6020A												
Arsenic	3.08		2.57	mg/kg dry	10		3.49			12	40%	
Barium	67.9		2.57	"	"		67.8			0.2	40%	
Cadmium	ND		0.514	"	"		ND				40%	
Chromium	38.1		2.57	"	"		38.3			0.5	40%	
Lead	15.2		0.514	"	"		14.8			3	40%	
Mercury	ND		0.206	"	"		ND				40%	
Selenium	ND		5.14	"	"		ND				40%	B-02
Silver	ND		0.514	"	"		ND				40%	

Apex Laboratories

a

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anderson Geological	Project: Sadri Propert	y
PO Box 649	Project Number: 1420.01	Reported:
Wilsonville, OR 97070	Project Manager: Erik Anderson	10/17/14 10:55

QUALITY CONTROL (QC) SAMPLE RESULTS

	Total Metals by EPA 6020 (ICPMS)											
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 4090308 - EPA 3051A Soil												
Matrix Spike (4090308-MS1)				Prep	ared: 09/	12/14 08:21	Analyzed:	09/12/14 2	0:06			
QC Source Sample: TP5-3.5L (A410 EPA 6020A)129-21)											
Arsenic	135		2.63	mg/kg dry	10	132	3.49	100	75-125%			
Barium	195		2.63	"	"	"	67.8	97	"			
Cadmium	137		0.527	"	"	"	ND	104	"			
Chromium	172		2.63	"	"	"	38.3	102	"			
Lead	152		0.527	"	"	"	14.8	104	"			
Mercury	2.55		0.211	"	"	2.63	ND	97	"			Q-41
Selenium	67.7		5.27	"	"	65.8	ND	103	"			B-02
Silver	67.7		0.527	"	"	"	ND	103	"			

Apex Laboratories

a

Anderson Geological	Project: Sadri Property	
PO Box 649	Project Number: 1420.01	Reported:
Wilsonville, OR 97070	Project Manager: Erik Anderson	10/17/14 10:55

QUALITY CONTROL (QC) SAMPLE RESULTS

Total Metals by EPA 6020 (ICPMS)												
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 4090329 - EPA 30	51A						Soi	l				
Blank (4090329-BLK1)				Prepa	ared: 09/	12/14 12:28	Analyzed:	09/13/14 13	:45			
EPA 6020A												
Cadmium	ND		0.200	mg/kg wet	10							
Lead	ND		0.200	"	"							
LCS (4090329-BS1)				Prepa	ared: 09/	12/14 12:28	Analyzed:	09/13/14 13	:59			
EPA 6020A												
Cadmium	50.4		0.200	mg/kg wet	10	50.0		101	80-120%			
Lead	51.5		0.200	"	"	"		103	"			
Matrix Spike (4090329-MS2)	I.			Prepa	ared: 09/	12/14 12:28	Analyzed:	09/13/14 15	5:22			
QC Source Sample: TP6-0-2T (A4I0129-08)											
EPA 6020A												
Cadmium	62.3		0.257	mg/kg dry	10	64.4	0.227	97	75-125%			
Lead	64.2		0.257	"	"	"	2.80	95	"			

Apex Laboratories

a

Anderson Geological	Project: Sadri Property	
PO Box 649	Project Number: 1420.01	Reported:
Wilsonville, OR 97070	Project Manager: Erik Anderson	10/17/14 10:55

QUALITY CONTROL (QC) SAMPLE RESULTS

Total Metals by EPA 6020 (ICPMS)												
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 4090393 - EPA 30	51A						Soi	I				
Blank (4090393-BLK1)				Prepa	ared: 09/	16/14 10:57	Analyzed:	09/17/14 1	5:02			
EPA 6020A												
Arsenic	ND		1.00	mg/kg wet	10							
Barium	ND		1.00	"	"							
Cadmium	ND		0.200	"	"							
Chromium	ND		1.00	"	"							
Lead	ND		0.200	"	"							
Mercury	ND		0.0800	"	"							
Selenium	ND		2.00	"	"							
Silver	ND		0.200	"	"							
LCS (4090393-BS1)				Prepa	ared: 09/	16/14 10:57	Analyzed:	09/17/14 1	5:07			
EPA 6020A												
Arsenic	52.9		1.00	mg/kg wet	10	50.0		106	80-120%			
Barium	52.5		1.00	"	"	"		105	"			
Cadmium	53.3		0.200	"	"	"		107	"			
Chromium	52.5		1.00	"	"	"		105	"			
Lead	53.1		0.200	"	"	"		106	"			
Mercury	1.01		0.0800	"	"	1.00		101	"			
Selenium	27.6		2.00	"	"	25.0		111	"			
Silver	26.6		0.200	"	"	"		107	"			
Duplicate (4090393-DUP1)				Prepa	ared: 09/	16/14 10:57	Analyzed:	09/17/14 1	6:29			
QC Source Sample: TP16-2.5L ((A4I0129-30)											
EPA 6020A												
Arsenic	4.87		2.25	mg/kg dry	10		4.13			16	40%	
Barium	147		2.25	"	"		164			11	40%	
Cadmium	0.991		0.451	"	"		0.569			54	40%	Q-17
Chromium	43.5		2.25	"	"		44.9			3	40%	
Lead	21.3		0.451	"	"		21.2			0.5	40%	
Mercury	ND		0.180	"	"		0.109			***	40%	Q-41
Selenium	ND		4.51	"	"		ND				40%	
Silver	ND		0.451	"	"		ND				40%	

Apex Laboratories

a

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anderson Geological	Project: Sadri Property	
PO Box 649	Project Number: 1420.01	Reported:
Wilsonville, OR 97070	Project Manager: Erik Anderson	10/17/14 10:55

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total	Metals by I	EPA 60	20 (ICPMS)					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 4090393 - EPA 305	1A						Soil					
Matrix Spike (4090393-MS1)				Prep	ared: 09/	16/14 10:57	Analyzed:	09/17/14 1	6:34			
QC Source Sample: TP16-2.5L (A	A4I0129-30)											
EPA 6020A												
Arsenic	123		2.24	mg/kg dry	10	112	4.13	106	75-125%			
Barium	300		2.24	"	"	"	164	122	"			
Cadmium	125		0.449	"	"	"	0.569	111	"			
Chromium	165		2.24	"	"	"	44.9	107	"			
Lead	149		0.449	"	"	"	21.2	114	"			
Mercury	2.36		0.179	"	"	2.24	0.109	100	"			Q-41
Selenium	62.2		4.49	"	"	56.0	ND	111	"			
Silver	61.4		0.449	"	"	"	ND	110	"			

Apex Laboratories

a

Apex	Labs
------	------

Anderson Geological	Project:	Sadri Property	
PO Box 649	Project Number:	1420.01	Reported:
Wilsonville, OR 97070	Project Manager:	Erik Anderson	10/17/14 10:55

QUALITY CONTROL (QC) SAMPLE RESULTS

				Percent	Dry We	ight						
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 4090174 - Total Soli	ids (Dry We	eight)					Soil					
Duplicate (4090174-DUP1)				Prej	pared: 09/	08/14 16:15	Analyzed:	09/09/14 09	:52			
QC Source Sample: TP6-5V (A410 EPA 8000C % Solids	32.6		1.00	% by Weight	1		29.4			10	20%	
Duplicate (4090174-DUP2)				Prep	pared: 09/	08/14 16:15	Analyzed:	09/09/14 09	:52			
QC Source Sample: TP16-0-2.5T (EPA 8000C % Solids	A410129-29) 45.4		1.00	% by Weight	1		46.0			1	20%	

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Batch 4090366 - Total Se	olids (Dry We	eight)					Soi	I				
Duplicate (4090366-DUP1)				Prepa	ared: 09/1	5/14 14:50	Analyzed:	09/16/14 1	0:01			
QC Source Sample: TP10-6L (A EPA 8000C	410129-16)											
% Solids	36.8		1.00	% by Weight	1		39.5			7	20%	

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Batch 4090395 - Total Solids (Dry Weight)

Soil

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anderson Geological	Project: Sa	adri Property	
PO Box 649	Project Number: 142	420.01	Reported:
Wilsonville, OR 97070	Project Manager: Eri	rik Anderson	10/17/14 10:55

SAMPLE PREPARATION INFORMATION

		Diesel and Oil I	Hydrocarbons by NV	VTPH-Dx with Silica G	el Cleanup		
Prep: EPA 3546 (F	uels) w/Sili	ca Gel+Acid (NWTP	<u>'H)</u>		Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 4090299							
A4I0129-01	Soil	NWTPH-Dx/SG	09/03/14 08:55	09/11/14 14:26	13.76g/5mL	10g/5mL	0.73
A4I0129-03	Soil	NWTPH-Dx/SG	09/03/14 09:38	09/11/14 14:26	14.05g/5mL	10g/5mL	0.71
A4I0129-04	Soil	NWTPH-Dx/SG	09/03/14 10:06	09/11/14 14:26	13.53g/5mL	10g/5mL	0.74
A4I0129-06	Soil	NWTPH-Dx/SG	09/03/14 10:40	09/11/14 14:26	13.53g/5mL	10g/5mL	0.74
A4I0129-08	Soil	NWTPH-Dx/SG	09/03/14 11:40	09/11/14 14:26	12.95g/5mL	10g/5mL	0.77
A4I0129-09	Soil	NWTPH-Dx/SG	09/03/14 11:50	09/11/14 14:26	13.1g/5mL	10g/5mL	0.76
A4I0129-17	Soil	NWTPH-Dx/SG	09/03/14 14:06	09/11/14 14:26	12.7g/5mL	10g/5mL	0.79
A4I0129-19	Soil	NWTPH-Dx/SG	09/03/14 14:27	09/11/14 14:26	12.86g/5mL	10g/5mL	0.78
A4I0129-21	Soil	NWTPH-Dx/SG	09/04/14 15:00	09/11/14 14:26	12.6g/5mL	10g/5mL	0.79
A4I0129-23	Soil	NWTPH-Dx/SG	09/04/14 08:53	09/11/14 14:26	13.97g/5mL	10g/5mL	0.72
A4I0129-25	Soil	NWTPH-Dx/SG	09/04/14 14:13	09/11/14 14:26	12.32g/5mL	10g/5mL	0.81
A4I0129-27	Soil	NWTPH-Dx/SG	09/04/14 11:33	09/11/14 14:26	12.32g/5mL	10g/5mL	0.81
A4I0129-29RE2	Soil	NWTPH-Dx/SG	09/04/14 09:36	09/11/14 14:26	12.85g/5mL	10g/5mL	0.78
A4I0129-31	Soil	NWTPH-Dx/SG	09/04/14 12:35	09/11/14 14:26	12.52g/5mL	10g/5mL	0.80
A4I0129-33	Soil	NWTPH-Dx/SG	09/04/14 15:46	09/11/14 14:26	13.77g/5mL	10g/5mL	0.73
A4I0129-35	Soil	NWTPH-Dx/SG	09/04/14 16:35	09/11/14 14:26	13.8g/5mL	10g/5mL	0.73
A4I0129-37	Soil	NWTPH-Dx/SG	09/04/14 17:20	09/11/14 14:26	14.9g/5mL	10g/5mL	0.67
A4I0129-40	Soil	NWTPH-Dx/SG	09/04/14 10:36	09/11/14 14:26	13.28g/5mL	10g/5mL	0.75
A4I0129-41	Soil	NWTPH-Dx/SG	09/04/14 10:47	09/11/14 14:26	12.97g/5mL	10g/5mL	0.77
Batch: 4090403							
A4I0129-05	Soil	NWTPH-Dx/SG	09/03/14 10:21	09/16/14 15:06	10.98g/5mL	10g/5mL	0.91
A4I0129-10	Soil	NWTPH-Dx/SG	09/03/14 14:37	09/16/14 15:06	10.26g/5mL	10g/5mL	0.98
A4I0129-26	Soil	NWTPH-Dx/SG	09/04/14 14:20	09/16/14 15:06	10.29g/5mL	10g/5mL	0.97
A4I0129-32	Soil	NWTPH-Dx/SG	09/04/14 12:41	09/16/14 15:06	10.66g/5mL	10g/5mL	0.94

Polyaromatic Hydrocarbons (PAHs) by EPA 8270D SIM

Prep: EPA 3546					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 4090185							
A4I0129-01	Soil	EPA 8270D (SIM)	09/03/14 08:55	09/09/14 08:34	10.31g/2mL	10g/2mL	0.97
A4I0129-03RE1	Soil	EPA 8270D (SIM)	09/03/14 09:38	09/09/14 08:34	10.61g/2mL	10g/2mL	0.94
A4I0129-04	Soil	EPA 8270D (SIM)	09/03/14 10:06	09/09/14 08:34	10.21g/2mL	10g/2mL	0.98
A4I0129-06	Soil	EPA 8270D (SIM)	09/03/14 10:40	09/09/14 08:34	10.25g/2mL	10g/2mL	0.98

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anderson Geological	Project: Sadri Property	
PO Box 649	Project Number: 1420.01	Reported:
Wilsonville, OR 97070	Project Manager: Erik Anderson	10/17/14 10:55

SAMPLE PREPARATION INFORMATION

		Polyaron	natic Hydrocarbons	(PAHs) by EPA 8270D	SIM		
Prep: EPA 3546					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
A4I0129-08	Soil	EPA 8270D (SIM)	09/03/14 11:40	09/09/14 08:34	11.08g/2mL	10g/2mL	0.90
A4I0129-09	Soil	EPA 8270D (SIM)	09/03/14 11:50	09/09/14 08:34	10.64g/2mL	10g/2mL	0.94
A4I0129-17	Soil	EPA 8270D (SIM)	09/03/14 14:06	09/09/14 08:34	11.04g/2mL	10g/2mL	0.91
A4I0129-19	Soil	EPA 8270D (SIM)	09/03/14 14:27	09/09/14 08:34	10.29g/2mL	10g/2mL	0.97
A4I0129-23RE1	Soil	EPA 8270D (SIM)	09/04/14 08:53	09/09/14 08:34	10.26g/2mL	10g/2mL	0.98
A4I0129-25	Soil	EPA 8270D (SIM)	09/04/14 14:13	09/09/14 08:34	10.33g/2mL	10g/2mL	0.97
A4I0129-27RE1	Soil	EPA 8270D (SIM)	09/04/14 11:33	09/09/14 08:34	10.14g/2mL	10g/2mL	0.99
A4I0129-29RE1	Soil	EPA 8270D (SIM)	09/04/14 09:36	09/09/14 08:34	10.63g/2mL	10g/2mL	0.94
A4I0129-31	Soil	EPA 8270D (SIM)	09/04/14 12:35	09/09/14 08:34	10.21g/2mL	10g/2mL	0.98
Batch: 4090378							
A4I0129-07	Soil	EPA 8270D (SIM)	09/03/14 10:44	09/16/14 07:52	11.58g/2mL	10g/2mL	0.86
A4I0129-10	Soil	EPA 8270D (SIM)	09/03/14 14:37	09/16/14 07:52	10.78g/2mL	10g/2mL	0.93
A4I0129-11	Soil	EPA 8270D (SIM)	09/03/14 14:59	09/16/14 07:52	10.46g/2mL	10g/2mL	0.96
A4I0129-12	Soil	EPA 8270D (SIM)	09/03/14 15:38	09/16/14 07:52	12.32g/2mL	10g/2mL	0.81
A4I0129-13	Soil	EPA 8270D (SIM)	09/03/14 15:42	09/16/14 07:52	12.83g/2mL	10g/2mL	0.78
A4I0129-16	Soil	EPA 8270D (SIM)	09/03/14 15:24	09/16/14 07:52	10g/2mL	10g/2mL	1.00
A4I0129-20	Soil	EPA 8270D (SIM)	09/03/14 14:36	09/16/14 07:52	11.14g/2mL	10g/2mL	0.90
A4I0129-26	Soil	EPA 8270D (SIM)	09/04/14 14:20	09/16/14 07:52	10.37g/2mL	10g/2mL	0.96
A4I0129-28	Soil	EPA 8270D (SIM)	09/04/14 11:46	09/16/14 07:52	10.33g/2mL	10g/2mL	0.97
A4I0129-30	Soil	EPA 8270D (SIM)	09/04/14 09:44	09/16/14 07:52	10.71g/2mL	10g/2mL	0.93
A4I0129-32	Soil	EPA 8270D (SIM)	09/04/14 12:41	09/16/14 07:52	10.52g/2mL	10g/2mL	0.95
A4I0129-33	Soil	EPA 8270D (SIM)	09/04/14 15:46	09/16/14 07:52	11.97g/2mL	10g/2mL	0.84
A4I0129-34	Soil	EPA 8270D (SIM)	09/04/14 15:50	09/16/14 07:52	10.41g/2mL	10g/2mL	0.96

Total Metals by EPA 6020 (ICPMS)

Prep: EPA 3051A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 4090308							
A4I0129-09	Soil	EPA 6020A	09/03/14 11:50	09/12/14 08:21	0.473g/50mL	0.5g/50mL	1.06
A4I0129-17	Soil	EPA 6020A	09/03/14 14:06	09/12/14 08:21	0.479g/50mL	0.5g/50mL	1.04
A4I0129-19	Soil	EPA 6020A	09/03/14 14:27	09/12/14 08:21	0.458g/50mL	0.5g/50mL	1.09
A4I0129-21	Soil	EPA 6020A	09/04/14 15:00	09/12/14 08:21	0.463g/50mL	0.5g/50mL	1.08
A4I0129-23	Soil	EPA 6020A	09/04/14 08:53	09/12/14 08:21	0.458g/50mL	0.5g/50mL	1.09
A4I0129-25	Soil	EPA 6020A	09/04/14 14:13	09/12/14 08:21	0.47g/50mL	0.5g/50mL	1.06

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anderson Geological	Project: Sadri Property			
PO Box 649	Project Number: 1420.01	Reported:		
Wilsonville, OR 97070	Project Manager: Erik Anderson	10/17/14 10:55		
SAMDI E DDEDADATION INFODMATION				

SAMPLE PREPARATION INFORMATION

Total Metals by EPA 6020 (ICPMS)							
Prep: EPA 3051A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
A4I0129-27	Soil	EPA 6020A	09/04/14 11:33	09/12/14 08:21	0.48g/50mL	0.5g/50mL	1.04
A4I0129-29	Soil	EPA 6020A	09/04/14 09:36	09/12/14 08:21	0.483g/50mL	0.5g/50mL	1.04
A4I0129-31	Soil	EPA 6020A	09/04/14 12:35	09/12/14 08:21	0.517g/50mL	0.5g/50mL	0.97
A4I0129-33	Soil	EPA 6020A	09/04/14 15:46	09/12/14 08:21	0.45g/50mL	0.5g/50mL	1.11
A4I0129-35	Soil	EPA 6020A	09/04/14 16:35	09/12/14 08:21	0.488g/50mL	0.5g/50mL	1.02
A4I0129-37	Soil	EPA 6020A	09/04/14 17:20	09/12/14 08:21	0.45g/50mL	0.5g/50mL	1.11
A4I0129-40	Soil	EPA 6020A	09/04/14 10:36	09/12/14 08:21	0.496g/50mL	0.5g/50mL	1.01
A4I0129-41	Soil	EPA 6020A	09/04/14 10:47	09/12/14 08:21	0.46g/50mL	0.5g/50mL	1.09
Batch: 4090329							
A4I0129-01	Soil	EPA 6020A	09/03/14 08:55	09/12/14 12:28	0.467g/50mL	0.5g/50mL	1.07
A4I0129-03	Soil	EPA 6020A	09/03/14 09:38	09/12/14 12:28	0.487g/50mL	0.5g/50mL	1.03
A4I0129-04	Soil	EPA 6020A	09/03/14 10:06	09/12/14 12:28	0.465g/50mL	0.5g/50mL	1.08
A4I0129-06	Soil	EPA 6020A	09/03/14 10:40	09/12/14 12:28	0.515g/50mL	0.5g/50mL	0.97
A4I0129-08	Soil	EPA 6020A	09/03/14 11:40	09/12/14 12:28	0.518g/50mL	0.5g/50mL	0.97
Batch: 4090393							
A4I0129-30	Soil	EPA 6020A	09/04/14 09:44	09/16/14 10:57	0.483g/50mL	0.5g/50mL	1.04
A4I0129-32	Soil	EPA 6020A	09/04/14 12:41	09/16/14 10:57	0.468g/50mL	0.5g/50mL	1.07
A4I0129-36	Soil	EPA 6020A	09/04/14 16:27	09/16/14 10:57	0.513g/50mL	0.5g/50mL	0.98

Percent Dry Weight Prep: Total Solids (Dry Weight) Sample Default RL Prep Initial/Final Initial/Final Factor Lab Number Matrix Method Sampled Prepared Batch: 4090174 A4I0129-01 Soil EPA 8000C 09/03/14 08:55 09/08/14 16:15 1N/A/1N/A 1N/A/1N/A NA 09/08/14 16:15 A4I0129-03 Soil EPA 8000C 09/03/14 09:38 1N/A/1N/A 1N/A/1N/A NA A4I0129-04 EPA 8000C 09/08/14 16:15 Soil 09/03/14 10:06 1N/A/1N/A 1N/A/1N/A NA EPA 8000C 1N/A/1N/A A4I0129-06 Soil 09/03/14 10:40 09/08/14 16:15 1N/A/1N/A NA 1N/A/1N/A A4I0129-08 Soil EPA 8000C 09/03/14 11:40 09/08/14 16:15 1N/A/1N/A NA EPA 8000C A4I0129-09 Soil 09/03/14 11:50 09/08/14 16:15 1N/A/1N/A 1N/A/1N/A NA A4I0129-17 Soil EPA 8000C 09/03/14 14:06 09/08/14 16:15 1N/A/1N/A 1N/A/1N/A NA A4I0129-19 Soil EPA 8000C 09/03/14 14:27 09/08/14 16:15 1N/A/1N/A 1N/A/1N/A NA A4I0129-21 Soil EPA 8000C 09/04/14 15:00 09/08/14 16:15 1N/A/1N/A 1N/A/1N/A NA A4I0129-23 Soil EPA 8000C 09/04/14 08:53 09/08/14 16:15 1N/A/1N/A 1N/A/1N/A NA A4I0129-25 Soil EPA 8000C 09/04/14 14:13 09/08/14 16:15 1N/A/1N/A NA 1N/A/1N/A

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Default

Initial/Final

1N/A/1N/A

RL Prep

Factor

NA

Anderson Geological	Project: Sadri Property				
PO Box 649	Project Number: 1420.01	Reported:			
Wilsonville, OR 97070	Project Manager: Erik Anderson	10/17/14 10:55			
SAMPLE PREPARATION INFORMATION					

			Percent Dr	y Weight	
Prep: Total Solids	(Dry Weight	t <u>)</u>			Sample
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final
A4I0129-27	Soil	EPA 8000C	09/04/14 11:33	09/08/14 16:15	1N/A/1N/A
A4I0129-29	Soil	EPA 8000C	09/04/14 09:36	09/08/14 16:15	1N/A/1N/A
A4I0129-31	Soil	EPA 8000C	09/04/14 12:35	09/08/14 16:15	1N/A/1N/A
A4I0129-33	Soil	EPA 8000C	09/04/14 15:46	09/08/14 16:15	1N/A/1N/A

A410129-29	Soil	EPA 8000C	09/04/14 09:36	09/08/14 16:15	1N/A/1N/A	1N/A/1N/A	NA	
A4I0129-31	Soil	EPA 8000C	09/04/14 12:35	09/08/14 16:15	1N/A/1N/A	1N/A/1N/A	NA	
A4I0129-33	Soil	EPA 8000C	09/04/14 15:46	09/08/14 16:15	1N/A/1N/A	1N/A/1N/A	NA	
A4I0129-35	Soil	EPA 8000C	09/04/14 16:35	09/08/14 16:15	1N/A/1N/A	1N/A/1N/A	NA	
A4I0129-37	Soil	EPA 8000C	09/04/14 17:20	09/08/14 16:15	1N/A/1N/A	1N/A/1N/A	NA	
A4I0129-40	Soil	EPA 8000C	09/04/14 10:36	09/08/14 16:15	1N/A/1N/A	1N/A/1N/A	NA	
A4I0129-41	Soil	EPA 8000C	09/04/14 10:47	09/08/14 16:15	1N/A/1N/A	1N/A/1N/A	NA	
Batch: 4090366								
A4I0129-07	Soil	EPA 8000C	09/03/14 10:44	09/15/14 14:51	1N/A/1N/A	1N/A/1N/A	NA	
A4I0129-10	Soil	EPA 8000C	09/03/14 14:37	09/15/14 14:51	1N/A/1N/A	1N/A/1N/A	NA	
A4I0129-11	Soil	EPA 8000C	09/03/14 14:59	09/15/14 14:51	1N/A/1N/A	1N/A/1N/A	NA	
A4I0129-12	Soil	EPA 8000C	09/03/14 15:38	09/15/14 14:51	1N/A/1N/A	1N/A/1N/A	NA	
A4I0129-13	Soil	EPA 8000C	09/03/14 15:42	09/15/14 14:51	1N/A/1N/A	1N/A/1N/A	NA	
A4I0129-16	Soil	EPA 8000C	09/03/14 15:24	09/15/14 14:51	1N/A/1N/A	1N/A/1N/A	NA	
A4I0129-20	Soil	EPA 8000C	09/03/14 14:36	09/15/14 14:51	1N/A/1N/A	1N/A/1N/A	NA	
A4I0129-26	Soil	EPA 8000C	09/04/14 14:20	09/15/14 14:51	1N/A/1N/A	1N/A/1N/A	NA	
A4I0129-28	Soil	EPA 8000C	09/04/14 11:46	09/15/14 14:51	1N/A/1N/A	1N/A/1N/A	NA	
A4I0129-30	Soil	EPA 8000C	09/04/14 09:44	09/15/14 14:51	1N/A/1N/A	1N/A/1N/A	NA	
A4I0129-32	Soil	EPA 8000C	09/04/14 12:41	09/15/14 14:51	1N/A/1N/A	1N/A/1N/A	NA	
A4I0129-34	Soil	EPA 8000C	09/04/14 15:50	09/15/14 14:51	1N/A/1N/A	1N/A/1N/A	NA	
Batch: 4090395								
A4I0129-05	Soil	EPA 8000C	09/03/14 10:21	09/16/14 11:12	1N/A/1N/A	1N/A/1N/A	NA	
A4I0129-36	Soil	EPA 8000C	09/04/14 16:27	09/16/14 11:12	1N/A/1N/A	1N/A/1N/A	NA	

Apex Laboratories

a

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anderson Geological PO Box 649 Wilsonville OR 97070		Project: Sadri Property			
		Project Number: 1420.01 Project Manager: Frik Anderson	Reported: 10/17/14 10:55		
	ine, ore 77070		10,17,1110.00		
		Notes and Definitions			
Qualifiers	<u>3:</u>				
B-02	Analyte detected in an associated blank	at a level between one-half the MRL and the MRL. (See Notes and Conventions	below.)		
F-03	The result for this hydrocarbon range is representative of the fuel pattern reporte	elevated due to the presence of individual analyte peaks in the quantitation range d.	that are not		
F-11	The hydrocarbon pattern indicates possi	ble weathered diesel, or a contribution from a related component.			
F-15	F-15 Results for diesel are estimated due to overlap from the reported oil result.				
F-16	F-16 Results for oil are estimated due to overlap from the reported diesel result.				
Q-05	Q-05 Analyses are not controlled on RPD values from sample or duplicate concentrations below 5 times the reporting level.				
Q-17	7 RPD between original and duplicate sample is outside of established control limits.				
Q-26	5 Peak separation for Benzo(b) and Benzo(k)fluoranthenes does not meet method specified criteria. Reported result includes the combined area of the two isomers and should be considered the total of Benzo(b+k)Fluoranthenes.				
Q-41	Estimated Results. Recovery of Continu biased high.	ing Calibration Verification sample above upper control limit for this analyte. Re	sults are likely		
R-02	The Reporting Limit for this analyte has	been raised to account for interference from coeluting organic compounds present	nt in the sample.		
S-01	01 Surrogate recovery for this sample is not available due to sample dilution required from high analyte concentration and/or matrix interference.				
S-05	5 Surrogate recovery is estimated due to sample dilution required for high analyte concentration and/or matrix interference.				
Notes ar	nd Conventions:				
DET	Analyte DETECTED				
ND	Analyte NOT DETECTED at or above t	he reporting limit			
NR	Not Reported				
dry	Sample results reported on a dry weight	basis. Results listed as 'wet' or without 'dry'designation are not dry weight correct	zted.		
RPD	Relative Percent Difference				
MDL	If MDL is not listed, data has been evalu	ated to the Method Reporting Limit only.			
WMSC	Water Miscible Solvent Correction has b	been applied to Results and MRLs for volatiles soil samples per EPA 8000C.			
Batch	Unloss specifically requested this report	t contains only results for Potch OC derived from client complex included in this	raport All		

Batch QC Unless specifically requested, this report contains only results for Batch QC derived from client samples included in this report. All analyses were performed with the appropriate Batch QC (including Sample Duplicates, Matrix Spikes and/or Matrix Spike Duplicates) in order to meet or exceed method and regulatory requirements. Any exceptions to this will be qualified in this report. Complete Batch QC results are available upon request. In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) is analyzed to demonstrate accuracy and precision of the extraction and analysis.

BlankApex assesses blank data for potential high bias down to a level equal to ½ the method reporting limit (MRL), except for conventionalPolicychemistry and HCID analyses which are assessed only to the MRL. Sample results flagged with a B or B-02 qualifier are potentially
biased high if they are less than ten times the level found in the blank for inorganic analyses or less than five times the level found in the
blank for organic analyses.

Apex Laboratories

Apex	Labs
r	

Anderson	Geological	Project:	Sadri Property	
PO Box 64	49	Project Number:	1420.01	Reported:
Wilsonvill	e, OR 97070	Project Manager:	Erik Anderson	10/17/14 10:55
	For accurate comparison of volatile and soil sample results should be directly and solution of the second s	results to the level found in the blank; vided by 1/50 of the sample dilution to	water sample results should be divided account for the sample prep factor.	by the dilution factor,
	Results qualified as reported below qualifications are not applied to J qu	the MRL may include a potential high aalified results reported below the MR	bias if associated with a B or B-02 qua L.	lified blank. B and B-02
	QC results are not applicable. For ex Spikes, etc.	xample, % Recoveries for Blanks and	Duplicates, % RPD for Blanks, Blank S	pikes and Matrix

*** Used to indicate a possible discrepency with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Apex Laboratories

hu au

Darwin Thomas, Business Development Director

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Apex Laboratories
Apex Labs

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Your Project #: A4I0129 Your C.O.C. #: NA

Attention:Darwin Thomas

Apex Laboratories 12232 SW Garden Place Tigard, OR USA 97223

Report Date: 2014/09/30

Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B4G6283 Received: 2014/09/10, 14:45

Received: 2014/05/10, 14.4

Sample Matrix: Soil # Samples Received: 2

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Dioxins/Furans in Soil (1613B) (1)	2	2014/09/23	2014/09/29	BRL SOP-00410	EPA 1613B m
2378TCDF Confirmation in Soil	2	N/A	2014/09/30	BRL SOP-00406	EPA 8290A m
Moisture	2	N/A	2014/09/13	CAM SOP-00445	R.Carter,1993

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Soils are reported on a dry weight basis unless otherwise specified.

Confirmatory runs for 2,3,7,8-TCDF are performed only if the primary result is greater than the RDL.

U = Undetected at the limit of quantitation.

J = Estimated concentration between the EDL & RDL.

B = Blank Contamination.

Q = One or more quality control criteria failed.

E = Analyte concentration exceeds the maximum concentration level.

K = Estimated maximum possible concentration due to ion abundance ratio failure.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Ivana Vukovic, Env Project Manager Email: IVukovic@maxxam.ca Phone# (905) 817-5700

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Maxxam Analytics International. is a NELAC accredited laboratory. Certificate # CANA001. Use of the NELAC logo however does not insure that Maxxam is accredited for all of the methods indicated. This certificate shall not be reproduced except in full, without the written approval of Maxxam Analytics Inc.

Apex Laboratories Client Project #: A4I0129

Maxxam ID		XM7024	XM7025			
Sampling Date		2014/09/03 14:06	2014/09/03 14:27			
COC Number		NA	NA			
	Units	TP11-0-3T	TP12-0-2T	RDL	MDL	QC Batch
Moisture	Units %	TP11-0-3T 24	TP12-0-2T 48	RDL 1.0	MDL 0.040	QC Batch 3747300

RESULTS OF ANALYSES OF SOIL

Success Through Science®

Apex Laboratories Client Project #: A4I0129

DIOXINS AND FURANS BY HRMS (SOIL)

Maxxam ID		XM7024							
Sampling Date		2014/09/03 14:06							
COC Number		NA				TOXIC EQU	IVALENCY	# of	
	Units	TP11-0-3T	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
2,3,7,8-Tetra CDD *	pg/g	0.162 U	0.162	0.999	0.0400	1.00	0.162		3763476
1,2,3,7,8-Penta CDD *	pg/g	0.213 J	0.131	4.99	0.0400	1.00	0.213		3763476
1,2,3,4,7,8-Hexa CDD *	pg/g	0.280 J	0.103	4.99	0.0400	0.100	0.0280		3763476
1,2,3,6,7,8-Hexa CDD *	pg/g	0.815 J	0.114	4.99	0.0400	0.100	0.0815		3763476
1,2,3,7,8,9-Hexa CDD *	pg/g	0.745 J	0.106	4.99	0.0400	0.100	0.0745		3763476
1,2,3,4,6,7,8-Hepta CDD *	pg/g	16.2	0.0761	4.99	0.0400	0.0100	0.162		3763476
Octa CDD *	pg/g	138	0.135	9.99	0.0799	0.000300	0.0414		3763476
Total Tetra CDD *	pg/g	2.65	0.162	0.999	0.0400				3763476
Total Penta CDD *	pg/g	1.57 J	0.131	4.99	0.0400				3763476
Total Hexa CDD *	pg/g	4.41 J	0.109	4.99	0.0400				3763476
Total Hepta CDD *	pg/g	26.3	0.0761	4.99	0.0400				3763476
2,3,7,8-Tetra CDF **	pg/g	0.268 J	0.0992	0.999	0.0400	0.100	0.0268		3763476
1,2,3,7,8-Penta CDF **	pg/g	0.162 J	0.125	4.99	0.0400	0.0300	0.00486		3763476
2,3,4,7,8-Penta CDF **	pg/g	0.122 U	0.122	4.99	0.0400	0.300	0.0366		3763476
1,2,3,4,7,8-Hexa CDF **	pg/g	0.386 J	0.108	4.99	0.0400	0.100	0.0386		3763476
1,2,3,6,7,8-Hexa CDF **	pg/g	0.193 J	0.108	4.99	0.0400	0.100	0.0193		3763476
2,3,4,6,7,8-Hexa CDF **	pg/g	0.102 U	0.102	4.99	0.0400	0.100	0.0102		3763476
1,2,3,7,8,9-Hexa CDF **	pg/g	0.116 U	0.116	4.99	0.0400	0.100	0.0116		3763476
1,2,3,4,6,7,8-Hepta CDF **	pg/g	3.40 J	0.0766	4.99	0.0400	0.0100	0.0340		3763476
1,2,3,4,7,8,9-Hepta CDF **	pg/g	0.268 U (1)	0.268	4.99	0.0400	0.0100	0.00268		3763476
Octa CDF **	pg/g	16.1	0.109	9.99	0.0799	0.000300	0.00483		3763476
Total Tetra CDF **	pg/g	1.18	0.0992	0.999	0.0400				3763476
Total Penta CDF **	pg/g	0.697 J	0.124	4.99	0.0400				3763476
Total Hexa CDF **	pg/g	3.13 J	0.108	4.99	0.0400				3763476
Total Hepta CDF **	pg/g	10.7	0.0762	4.99	0.0400				3763476
Confirmation 2,3,7,8-Tetra CDF **	pg/g	0.11 J	0.10	1.0	0.90	0.100	0.0110		3767982
TOTAL TOXIC EQUIVALENCY	pg/g						0.936		
Surrogate Recovery (%)									
C13-1234678 HeptaCDD *	%	88							3763476

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

* CDD = Chloro Dibenzo-p-Dioxin

** CDF = Chloro Dibenzo-p-Furan

(1) EMPC / NDR - Peak detected does not meet ratio criteria and has resulted in an elevated detection limit.

Apex Laboratories Client Project #: A4I0129

DIOXINS AND FURANS BY HRMS (SOIL)

Maxxam ID		XM7024							
Sampling Date		2014/09/03 14:06							
COC Number		NA				TOXIC EQU	JIVALENCY	# of	
	Units	TP11-0-3T	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
C13-1234678 HeptaCDF **	%	98							3763476
C13-123478 HexaCDD *	%	93							3763476
C13-123478 HexaCDF **	%	100							3763476
C13-1234789 HeptaCDF **	%	82							3763476
C13-123678 HexaCDD *	%	84							3763476
C13-123678 HexaCDF **	%	107							3763476
C13-12378 PentaCDD *	%	89							3763476
C13-12378 PentaCDF **	%	88							3763476
C13-123789 HexaCDF **	%	85							3763476
C13-234678 HexaCDF **	%	117							3763476
C13-23478 PentaCDF **	%	91							3763476
C13-2378 TetraCDD *	%	72							3763476
C13-2378 TetraCDF **	%	84							3763476
C13-OCDD *	%	68							3763476
Confirmation C13-2378 TetraCDF **	%	67							3767982

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

** CDF = Chloro Dibenzo-p-Furan

* CDD = Chloro Dibenzo-p-Dioxin

Success Through Science®

Apex Laboratories Client Project #: A4I0129

DIOXINS AND FURANS BY HRMS (SOIL)

Maxxam ID		XM7025							
Sampling Date		2014/09/03 14:27							
COC Number		NA				TOXIC EQU	IVALENCY	# of	
	Units	TP12-0-2T	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
2,3,7,8-Tetra CDD *	pg/g	0.769 J	0.172	0.998	0.0399	1.00	0.769		3763476
1,2,3,7,8-Penta CDD *	pg/g	1.33 J	0.165	4.99	0.0399	1.00	1.33		3763476
1,2,3,4,7,8-Hexa CDD *	pg/g	1.66 J	0.122	4.99	0.0399	0.100	0.166		3763476
1,2,3,6,7,8-Hexa CDD *	pg/g	4.15 J	0.135	4.99	0.0399	0.100	0.415		3763476
1,2,3,7,8,9-Hexa CDD *	pg/g	4.33 J	0.125	4.99	0.0399	0.100	0.433		3763476
1,2,3,4,6,7,8-Hepta CDD *	pg/g	79.4	0.120	4.99	0.0399	0.0100	0.794		3763476
Octa CDD *	pg/g	606	0.253	9.98	0.0798	0.000300	0.182		3763476
Total Tetra CDD *	pg/g	13.5	0.172	0.998	0.0399				3763476
Total Penta CDD *	pg/g	16.5	0.165	4.99	0.0399				3763476
Total Hexa CDD *	pg/g	30.4	0.129	4.99	0.0399				3763476
Total Hepta CDD *	pg/g	144	0.120	4.99	0.0399				3763476
2,3,7,8-Tetra CDF **	pg/g	2.84	0.196	0.998	0.0399	0.100	0.284		3763476
1,2,3,7,8-Penta CDF **	pg/g	0.758 J	0.122	4.99	0.0399	0.0300	0.0227		3763476
2,3,4,7,8-Penta CDF **	pg/g	0.712 J	0.120	4.99	0.0399	0.300	0.214		3763476
1,2,3,4,7,8-Hexa CDF **	pg/g	1.77 J	0.108	4.99	0.0399	0.100	0.177		3763476
1,2,3,6,7,8-Hexa CDF **	pg/g	0.736 J	0.108	4.99	0.0399	0.100	0.0736		3763476
2,3,4,6,7,8-Hexa CDF **	pg/g	0.487 J	0.102	4.99	0.0399	0.100	0.0487		3763476
1,2,3,7,8,9-Hexa CDF **	pg/g	0.116 U	0.116	4.99	0.0399	0.100	0.0116		3763476
1,2,3,4,6,7,8-Hepta CDF **	pg/g	15.2	0.107	4.99	0.0399	0.0100	0.152		3763476
1,2,3,4,7,8,9-Hepta CDF **	pg/g	0.950 J	0.106	4.99	0.0399	0.0100	0.00950		3763476
Octa CDF **	pg/g	65.0	0.167	9.98	0.0798	0.000300	0.0195		3763476
Total Tetra CDF **	pg/g	18.7	0.196	0.998	0.0399				3763476
Total Penta CDF **	pg/g	8.29	0.121	4.99	0.0399				3763476
Total Hexa CDF **	pg/g	17.4	0.108	4.99	0.0399				3763476
Total Hepta CDF **	pg/g	48.7	0.106	4.99	0.0399				3763476
Confirmation 2,3,7,8-Tetra CDF **	pg/g	1.23	0.15	1.0	0.90	0.100	0.123		3767982
TOTAL TOXIC EQUIVALENCY	pg/g						4.94		
Surrogate Recovery (%)									
C13-1234678 HeptaCDD *	%	74							3763476

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

* CDD = Chloro Dibenzo-p-Dioxin

** CDF = Chloro Dibenzo-p-Furan

Apex Laboratories Client Project #: A4I0129

DIOXINS AND FURANS BY HRMS (SOIL)

Maxxam ID		XM7025							
Sampling Date		2014/09/03 14:27							
COC Number		NA				TOXIC EQU	JIVALENCY	# of	
	Units	TP12-0-2T	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
C13-1234678 HeptaCDF **	%	89							3763476
C13-123478 HexaCDD *	%	78							3763476
C13-123478 HexaCDF **	%	91							3763476
C13-1234789 HeptaCDF **	%	71							3763476
C13-123678 HexaCDD *	%	74							3763476
C13-123678 HexaCDF **	%	93							3763476
C13-12378 PentaCDD *	%	67							3763476
C13-12378 PentaCDF **	%	68							3763476
C13-123789 HexaCDF **	%	72							3763476
C13-234678 HexaCDF **	%	96							3763476
C13-23478 PentaCDF **	%	67							3763476
C13-2378 TetraCDD *	%	59							3763476
C13-2378 TetraCDF **	%	65							3763476
C13-OCDD *	%	59							3763476
Confirmation C13-2378 TetraCDF **	%	57							3767982

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

** CDF = Chloro Dibenzo-p-Furan

* CDD = Chloro Dibenzo-p-Dioxin

Apex Laboratories Client Project #: A4I0129

TEST SUMMARY

Maxxam ID: Sample ID: Matrix:	XM7024 TP11-0-3T Soil					Collected: 2014/09/03 Shipped: Received: 2014/09/10	
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Dioxins/Furans in Soil (161	L3B)	HRMS/MS	3763476	2014/09/23	2014/09/29	Owen Cosby	
2378TCDF Confirmation in	n Soil	HRMS/MS	3767982	N/A	2014/09/30	Vica Cioranic	
Moisture		BAL	3747300	N/A	2014/09/13	Valentina Kaftani	
Maxxam ID: Sample ID: Matrix:	XM7025 TP12-0-2T Soil					Collected: 2014/09/03 Shipped: Received: 2014/09/10	
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Dioxins/Furans in Soil (161	L3B)	HRMS/MS	3763476	2014/09/23	2014/09/29	Owen Cosby	
2378TCDF Confirmation in	n Soil	HRMS/MS	3767982	N/A	2014/09/30	Vica Cioranic	
Moisture		BAL	3747300	N/A	2014/09/13	Valentina Kaftani	

Maxxam Job #: B4G6283 Report Date: 2014/09/30 **Apex Laboratories**

Client Project #: A4I0129

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 5.0°C

Results relate only to the items tested.

Apex Laboratories Client Project #: A4I0129

QUALITY ASSURANCE REPORT

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	Units	QC Limits
3747300	JV1	RPD - Sample/Sample Dup	Moisture	2014/09/13	0.91		%	20
3763476	OBC	Spiked Blank	C13-1234678 HeptaCDD	2014/09/29		83	%	23 - 140
			C13-1234678 HeptaCDF	2014/09/29		91	%	28 - 143
			C13-123478 HexaCDD	2014/09/29		85	%	32 - 141
			C13-123478 HexaCDF	2014/09/29		91	%	26 - 152
			C13-1234789 HeptaCDF	2014/09/29		81	%	26 - 138
			C13-123678 HexaCDD	2014/09/29		80	%	28 - 130
			C13-123678 HexaCDF	2014/09/29		97	%	26 - 123
			C13-12378 PentaCDD	2014/09/29		78	%	25 - 181
			C13-12378 PentaCDF	2014/09/29		76	%	24 - 185
			C13-123789 HexaCDF	2014/09/29		83	%	29 - 147
			C13-234678 HexaCDF	2014/09/29		112	%	28 - 136
			C13-23478 PentaCDF	2014/09/29		80	%	21 - 178
			C13-2378 TetraCDD	2014/09/29		59	%	25 - 164
			C13-2378 TetraCDF	2014/09/29		73	%	24 - 169
			C13-OCDD	2014/09/29		72	%	17 - 157
			2,3,7,8-Tetra CDD	2014/09/29		117	%	67 - 158
			1,2,3,7,8-Penta CDD	2014/09/29		94	%	25 - 181
			1,2,3,4,7,8-Hexa CDD	2014/09/29		106	%	70 - 164
			1,2,3,6,7,8-Hexa CDD	2014/09/29		116	%	76 - 134
			1,2,3,7,8,9-Hexa CDD	2014/09/29		117	%	64 - 162
			1,2,3,4,6,7,8-Hepta CDD	2014/09/29		101	%	70 - 140
			Octa CDD	2014/09/29		104	%	78 - 144
			2.3.7.8-Tetra CDF	2014/09/29		106	%	75 - 158
			1.2.3.7.8-Penta CDF	2014/09/29		106	%	80 - 134
			2.3.4.7.8-Penta CDF	2014/09/29		102	%	68 - 160
			1.2.3.4.7.8-Hexa CDF	2014/09/29		108	%	72 - 134
			1.2.3.6.7.8-Hexa CDF	2014/09/29		102	%	84 - 130
			2.3.4.6.7.8-Hexa CDF	2014/09/29		85	%	70 - 156
			1.2.3.7.8.9-Hexa CDF	2014/09/29		115	%	78 - 130
			1.2.3.4.6.7.8-Hepta CDF	2014/09/29		109	%	82 - 122
			1.2.3.4.7.8.9-Hepta CDF	2014/09/29		112	%	78 - 138
			Octa CDF	2014/09/29		119	%	63 - 170
3763476	OBC	RPD	2.3.7.8-Tetra CDD	2014/09/29	0.86	110	%	25
0,00,00	020		1 2 3 7 8-Penta CDD	2014/09/29	0		%	25
			1 2 3 4 7 8-Hexa CDD	2014/09/29	0		%	25
			1 2 3 6 7 8-Heya CDD	2014/09/29	75		%	25
			1 2 3 7 8 9-Hexa CDD	2014/09/29	3.4		%	25
			1 2 3 4 6 7 8-Henta CDD	2014/09/29	61		%	25
				2014/09/29	4.7		%	25
			2 3 7 8-Tetra CDE	2014/09/29	0.94		%	25
			1 2 3 7 8-Penta CDF	2014/09/29	0.94		%	25
			23478-Penta CDE	2014/09/29	0.54		%	25
			1 2 3 4 7 8-Heva CDE	2014/09/29	0 92		70 %	25
			1,2,3,4,7,8 Heve CDF	2014/09/29	0.92		70 0/	25
			2 2 4 6 7 8 Hova CDF	2014/09/29	1.35		/0 0/	25
				2014/03/23	1.4		/0 0/_	25
			1,2,3,7,0,3-NEXA UDF	2014/09/29	1.0 2.0		70 0/	20 25
			1,2,3,4,0,7,0-TEPLO UDF	2014/09/29	2.0		70 0/	20
				2014/09/29	U		% ₀∕	25
2762176	OPC	Mathad Blank	C12 1224678 HantaCDD	2014/09/29	0.84	00	70 0/	25
3/034/0	OBC			2014/09/29		90	% 0/	23 - 140
				2014/09/29		90	% 0/	28 - 143
			C13-123478 HexaCDD	2014/09/29		92	%	32 - 141
			C13-1234/8 HexaCDF	2014/09/29		101	%	26 - 152

Maxxam Job #: B4G6283 Report Date: 2014/09/30 Apex Laboratories Client Project #: A4I0129

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	Units	QC Limits
			C13-1234789 HeptaCDF	2014/09/29		85	%	26 - 138
			C13-123678 HexaCDD	2014/09/29		88	%	28 - 130
			C13-123678 HexaCDF	2014/09/29		109	%	26 - 123
			C13-12378 PentaCDD	2014/09/29		97	%	25 - 181
			C13-12378 PentaCDF	2014/09/29		87	%	24 - 185
			C13-123789 HexaCDF	2014/09/29		91	%	29 - 147
			C13-234678 HexaCDF	2014/09/29		119	%	28 - 136
			C13-23478 PentaCDF	2014/09/29		93	%	21 - 178
			C13-2378 TetraCDD	2014/09/29		69	%	25 - 164
			C13-2378 TetraCDF	2014/09/29		79	%	24 - 169
			C13-OCDD	2014/09/29		71	%	17 - 157
			2,3,7,8-Tetra CDD	2014/09/29	0.120 U, EDL=0.120		pg/g	
			1,2,3,7,8-Penta CDD	2014/09/29	0.0788 U, EDL=0.0788		pg/g	
			1,2,3,4,7,8-Hexa CDD	2014/09/29	0.0676 U, FDI =0.0676		pg/g	
			1,2,3,6,7,8-Hexa CDD	2014/09/29	0.0747 U, FDI =0 0747		pg/g	
			1,2,3,7,8,9-Hexa CDD	2014/09/29	0.0692 U,		pg/g	
			1,2,3,4,6,7,8-Hepta CDD	2014/09/29	0.116 U,		pg/g	
			Octa CDD	2014/09/29	0.126 U,		pg/g	
			Total Tetra CDD	2014/09/29	0.568 U,		pg/g	
			Total Penta CDD	2014/09/29	0.168 U,		pg/g	
			Total Hexa CDD	2014/09/29	EDL=0.168 (1) 0.608 U,		pg/g	
			Total Hepta CDD	2014/09/29	EDL=0.608 (1) 0.116 U,		pg/g	
			2,3,7,8-Tetra CDF	2014/09/29	EDL=0.116 0.0699 U,		pg/g	
			1,2,3,7,8-Penta CDF	2014/09/29	EDL=0.0699 0.0749 U,		pg/g	
					EDL=0.0749			
			2,3,4,7,8-Penta CDF	2014/09/29	0.0735 U, EDL=0.0735		pg/g	
			1,2,3,4,7,8-Hexa CDF	2014/09/29	0.130 U, EDL=0.130		pg/g	
			1,2,3,6,7,8-Hexa CDF	2014/09/29	0.130 U, FDI =0.130		pg/g	
			2,3,4,6,7,8-Hexa CDF	2014/09/29	0.122 U,		pg/g	
			1,2,3,7,8,9-Hexa CDF	2014/09/29	0.139 U,		pg/g	
			1,2,3,4,6,7,8-Hepta CDF	2014/09/29	0.0632 U,		pg/g	
			1,2,3,4,7,8,9-Hepta CDF	2014/09/29	0.0625 U, EDL=0.0625		pg/g	

Apex Laboratories Client Project #: A4I0129

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	Units	QC Limits
			Octa CDF	2014/09/29	0.106 U, EDL=0.106		pg/g	
			Total Tetra CDF	2014/09/29	0.0911 U, EDL=0.0911 (1)		pg/g	
			Total Penta CDF	2014/09/29	0.0742 U, EDL=0.0742		pg/g	
			Total Hexa CDF	2014/09/29	0.130 U, EDL=0.130		pg/g	
			Total Hepta CDF	2014/09/29	0.0628 U, EDL=0.0628		pg/g	
3767982	VCI	Method Blank	Confirmation 2,3,7,8-Tetra CDF	2014/09/30	0.10 U, EDL=0.10		pg/g	
			Confirmation C13-2378 TetraCDF	2014/09/30		66	%	40 - 135

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

(1) EMPC / NDR - Peak detected does not meet ratio criteria and has resulted in an elevated detection limit.

Maxxam Job #: B4G6283 Report Date: 2014/09/30 Success Through Science®

Apex Laboratories Client Project #: A4I0129

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

auistin Camiere

Cristina Carriere, Scientific Services

Slanter

Owen Cosby, BSc.C.Chem, Supervisor, HRMS Services

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

APPENDIX D

Cost Estimate for the Remediation of the Sadri Property

Cost Estimate for Remediation of Sadri Property October, 2014

Activity	Qty	Rate	Total
Trackhoe excavator	2 days	1,400.00	\$2,800.00
Trucking (25-yd truck & trailer)	120 hrs	125.00	15,000.00
Laborer	16 hrs	45.00	720.00
Soil disposal - Hillsboro Landfill	576 tons*	50.00	28,800.00
Backfill and compact	576 yards	15.00	8,640.00
		SUBTOTAL	\$55,960.00
Laboratory (confirmation soil sampling)			2,000.00
Consulting			5,000.00
		SUBTOTAL	\$7,000.00
		GRAND TOTAL	62,960.00

Based on estimated conversion factor of 1 ton/cubic yard