

PHASE II ENVIRONMENTAL SITE ASSESSMENT

SADRI PROPERTY TAX LOT 200, MAP 1S1025 TILLAMOOK, OREGON

Prepared for

TILLAMOOK COUNTY, OREGON

P.O. Box 649 Wilsonville, Oregon 97070 (503) 682-2500

> Project #1420.01 February 14, 2014

PHASE II ENVIRONMENTAL SITE ASSESSMENT

Sadri Property Tax Lot 200, Map 1S1025 Tillamook, Oregon

Prepared for

Tillamook County, Oregon

This report is for the exclusive use of the clients, and is not to be relied upon by other parties. It is not to be photographed, photocopied, or similarly reproduced in total or in part without the expressed written consent of the client and Anderson Geological.

Anderson Geological, Inc. P.O. Box 649 Wilsonville, Oregon 97070 (503) 682-2500

TABLE OF CONTENTS

1.0 IN	TRODUCTION1
1.1	Site Location and Setting
1.2	Geology and Hydrogeology
	ACKGROUND2
3.0 PU	TRPOSE AND SCOPE
4.0 FI	ELD METHODS4
4.1	Soil Sampling
4.2	Groundwater Sampling
4.3	Sediment Sampling
5.0 IN	VESTIGATION RESULTS6
5.1	Subsurface Conditions
5.2	East Mill Building
	5.2.1 Soil
	5.2.2 Groundwater
5.3	West Mill Building
	5.3.1 Soil
	5.3.2 Groundwater
5.4	Log Ponds - Sediment
	5.4.1 East Log Pond
	5.4.2 Inlet Log Pond
5.5	Fill Area - West Log Pond
6.0 CC	ONCEPTUAL SITE MODEL8
6.1	Nature and Extent of Contamination
	6.1.1 East Mill Building
	6.1.2 East Mill Building
	6.1.3 East Log Pond and Inlet Log Pond
	6.1.4 Fill Area - West Log Pond
6.2	Current and Future Land Use
6.3	Contaminant Sources
6.4	- Human Receptors
6.5	Ecological Receptors
	Exposure Pathways
7.0 RI	SK-BASED ANALYSIS14
	Soil Screening
7.2	Groundwater Screening
	Sediment Screening
8.0 SU	MMARY AND CONCLUSIONS15
οοττ	MITATIONS 14

FIGURES

Figure 1	Site Location Map
Figure 2	Site and Vicinity Plan
Figure 3	Site Detail and Former Mill Features
Figure 4	Detail Plan: West Mill (Post-1944)
Figure 5	Detail Plan: East Mill (Pre-1944)
Figure 6	Fill Area - West Log Pond

TABLES

Table 1	Soil Analysis Summary (TPH, PAHs)
Table 2	Soil Analysis Summary (PCBs, Metals)
Table 3	Soil Analysis Summary (VOCs)
Table 4	Groundwater Analysis Summary (TPH, Metals)
Table 5	Groundwater Analysis Summary (VOCs)
Table 6	Sediment Analysis Summary (TPH, PCBs)
Table 7	Sediment Analysis Summary (PAHs)
Table 8	Sediment Analysis Summary (Metals)

APPENDICES

Appendix A	Field Sampling Procedures, Exploratory Boring Logs, Test Pit Logs
Appendix B	Laboratory Reports and Sample Chain of Custody

1.0 INTRODUCTION

Anderson Geological, Inc. (AGI) was authorized by Tillamook County to complete this Phase II Environmental Site Assessment of Tax lot 200, Map 1S1025, Tillamook, Oregon (Subject Property). Tillamook County is in the process of acquiring the property under the as part of the Southern Flow Corridor (SFC) project. The purpose of the SFC project is to provide flood level reduction benefits by removing man-made impediments to flood flow and to permanently restore and protect tidal wetland habitats at the confluence of the Wilson and Trask Rivers.

The SFC project accomplishes this by extensive removal of existing levees and fill, including the levees on and adjacent to the Subject Property. New setback tidal dikes are required to protect adjacent private lands. Areas outside the setback dikes will be restored to tidal marsh.

Details of the restoration are not finalized, and may include excavation of soils on the southeast corner of the Subject Property in the vicinity of the former log mills to enhance the effectiveness of the flood reduction benefits.

The completion of the SFC involves the acquisition of private lands, which includes the Subject Property. This Phase II Environmental Assessment is intended to provide an initial assessment of the environmental concerns identified during a Phase I Environmental Assessment of the subject property by AGI.

1.1 Site Location and Setting

The Subject Property is a 65.98-acre spruce forest wetland located along Hoquarten Slough on the north side of the downtown area of Tillamook, Oregon (Fig. 1). Excavation and the construction of levees and dikes over the past 80 years have created marshes and ponds on the east end of the property that were used as log ponds for the log peeling mills that operated on the subject property during the mid 20th century. Two separate mills operated on the property and are referred to in this report as "East Mill" which operated prior to 1944, and "West Mill" which operated from 1944 through approximately 1965. The approximate locations of the mills are shown on Figures 2 and 3.

The Subject Property is currently vacant and consists of woodland and marshes. The levees and dikes around the perimeter and interior areas of the property remain, forming shallow marshes and ponds in the middle section of the property referred to in this report as West Pond and East Pond. A narrow inlet off of Hoquarten Slough, referred to as the Inlet Pond, was used as a log pond when the East Mill was in operation prior to 1944.

Upland areas are located on the east and west ends of the site. Much of the site is overgrown with small trees and dense undergrowth. A foot trail was recently cut through the vegetation along the tops of the levees and dikes, providing access to interior areas of the site. A lack of recent rains resulted in low

water levels in the ponds, exposing the sediment and marsh grasses in all areas except in narrow channels.

1.2 Geology and Hydrogeology

The regional geology consists of flood plain and terrace alluvium overlying Tertiary volcanic deposits. The area is underlain by floodplain and marine bay mud deposits with layers of sand and gravelly sand and organic matter to depths of more than 150 feet, These deposits are underlain by marine sedimentary deposits. Areas around the former mills on the east end of the subject property are believed to be partially underlain by fill material consisting of wood waste (chips and sawdust).

During the current investigation, saturated soils were first encountered at depths of 1-3 feet below ground surface (bgs). Given the lack of significant topographic features in the area, the groundwater surface is expected to be relatively flat, with a probable net flow toward Hoquarten Slough.

Surface water in the area consists of marsh and wetlands throughout the subject property that display standing water at various times of the year in response to precipitation events. The upland portions of the subject property are isolated from these intermittent surface water bodies and Hoquarten Slough by low, earthen levees.

2.0 BACKGROUND

The site history and regulatory background of the subject property is presented in the findings of a Phase I Environmental Assessment report completed by Anderson Geological in November 2013. The following is a summary of the history of the property and the findings and conclusions of the report.

Phase I Environmental Site Assessment
Sadri Property

Tax Lot 200, Map 1S1025

November 22, 2013

The Subject Property was undeveloped until the 1920's when the Tillamook Spruce Veneer Company opened a veneer mill on the east end of the property, near Douglas Street and Front Avenue. The mill was built in the low-lying area on pilings. Logs were transported to the mill from Hoquarten Slough and into a narrow inlet on the north side of the mill. The mill included saws, dry kilns, a woodworking house, a boiler house, machine shop and oil house. It is believed that the mill was powered by steam generated from wood waste from the mill.

In 1944, the mill was abandoned and a new mill, operated by Aberdeen Plywood Company, was constructed west of the original mill. A log pond was created in the low-lying area west of the mill

and the Hoquarten Slough inlet was no longer used for log delivery to the mill. The new mill was also built on pilings and had a lathe room, a filing room (saw and knife sharpening), a clipper room (for trimming veneer) and a power room. A second log pond was created west of the existing pond in the mid- to late-1950's.

The mill was originally powered by electricity and steam. The mill may have abandoned steam power in the late 1950's when a separate burner was constructed near the old mill for burning wood wastes. The green veneer was shipped from the new mill to the company's plywood plant in Tacoma, Washington for further processing. There is no evidence that plywood manufacturing was ever performed on the subject property.

The mill closed in the mid-1960's and the log ponds were drained. Fill material, possibly from the areas around the former mill buildings, was placed on the southeast corner of the west log pond around the same time as the closure of the mill. The filled area is currently overgrown with trees and dense vegetation.

No *recognized environmental conditions* were identified in connection with the Subject Property, except for the following:

- The Subject Property was the site of two different veneer mills between the 1920's and 1965. The mills appear to have been powered by electricity and steam power fueled by wood waste from the mills. A concern exists that lubricants, solvents, and hydraulic fluid may have been released to the subsurface, including sediments in the adjacent log ponds. *Recommendation*: Complete a shallow soil and sediment investigation in the vicinity of the former mill buildings and log ponds to identify potential contaminants in those media.
- Historic aerial photographs show that fill material from an unknown source was placed on the southeast corner of the west log pond in the 1960's. A concern exists that environmental contaminants could have been present in the fill material when it was placed on the subject property. *Recommendation:* Collect samples of the fill material to identify potential contaminants in the material.

3.0 PURPOSE AND SCOPE

The purpose of the current investigation was to evaluate the Subject Property for the potential presence of petroleum and hazardous substances in the soil, groundwater and sediment on the subject property as a result of 1) the previous use of the site as a log peeling mill that is assumed to have used petroleum products, including lubricants and hydraulic fluids, and 2) the placement of fill material from an unknown source or sources in a portion of one of the log ponds.

The scope of work included the following:

- Advanced eight hand-augered borings across the site and logged the subsurface materials for lithology, structures, staining, moisture, etc. The borings were located in the former locations of mechanical equipment, a boiler house, and mechanical room and "oil house", and a woodworking area. Soil and groundwater samples were collected from the borings.
- Analyzed one soil sample from each boring for diesel and heavy oil petroleum hydrocarbons and 8 RCRA metals. Analyzed selected soil samples for volatile organic compounds, and polychlorinated biphenyls (PCBs).
- Collected groundwater samples from selected borings for analysis for diesel and heavy oil petroleum hydrocarbons, volatile organic compounds and 8 RCRA metals.
- Sampled sediment from five locations in marshy areas that were previously used by the mills
 as log ponds and analyzed the samples for diesel and heavy oil, polychlorinated biphenyls and
 metals.
- Collected soil samples from the portion of the west log pond that was filled in the 1960's with fill from an unknown origin and analyzed the samples for diesel and heavy oil, polychlorinated biphenyls and metals.
- Prepared this report presenting the methods, results, and conclusions of this investigation.
 Interpreted the results for human exposure risk with respect to the *Oregon Risk-Based Cleanup Rules for the Remediation of Petroleum-Contaminated Sites* (September 22, 2003, revised June 7, 2012). A preliminary screening of ecological risks was completed by comparing contaminant concentrations with screening levels from various EPA and Oregon DEQ sources.

4.0 FIELD METHODS

The presence of dense vegetation and soft, wet ground made the use of powered sampling equipment impractical. Given the shallow depth of the proposed sampling and the fine-grained nature of the soils, all sampling was performed using manually-operated equipment. The field investigation involved sampling of soil and sediment from hand-augered borings. Sample locations were field-marked with orange pin flags.

4.1 Soil Sampling

A total of ten borings were completed in upland soils using an AMS hand auger with a 3½-inch mud auger bit. The approximate boring locations are shown on Figures 4 through 6.

The recovered soil was removed from the auger and examined for lithology and evidence of environmental contamination such as staining, sheens, etc. A portion of recovered soil was removed and screened for volatile organic compounds using a portable photoionization detector (PID). The

boring logs are included in Appendix A.

The borings were completed in four areas:

- Three borings near the boiler room, machine shop and oil room (East Mill);
- Two borings near the woodworking area (East Mill);
- Three borings around the concrete structure around the filing room, power room and lathe room (West Mill).
- Two borings on the southeast corner of the west log pond that received fill in the 1960's.

One soil sample was collected from each boring from the depth of the groundwater capillary fringe, where petroleum-based contaminants would likely be concentrated. None of the recovered soils displayed field evidence of contamination.

The soil samples collected from the East Mill (machinery rooms and woodworking area) and West Mill were analyzed for Total Petroleum Hydrocarbons - Diesel extended (Northwest Method NWTPH-Dx) prepared with a silica gel cleanup to reduce biogenic interference from sawdust and other woody matter. The samples near the former machinery rooms were also analyzed for 8 RCRA metals. The soil sample from each of the three areas that contained the highest concentration of diesel/heavy oil was also analyzed for volatile organic compounds, polynuclear aromatic hydrocarbons, and polychlorinated biphenyls (PCBs).

The soil samples from the fill material in the west pond were analyzed for Total Petroleum Hydrocarbons - Hydrocarbon Identification (NWTPH-HCID), 8 RCRA metals and polychlorinated biphenyls (PCBs).

4.2 Groundwater Sampling

Groundwater samples were collected from borings WM-1 (West Mill) and EM-2 (East Mill). The samples were collected from slotted 1-inch PVC groundwater sampling screens placed within the bore holes which were completed to 3 to $3\frac{1}{2}$ feet bgs. Polyethylene tubing was placed into the well point and the temporary well was purged of 3-5 liters of water using a peristaltic pump to remove suspended sediment. After purging, groundwater was sampled using the peristaltic pump. The groundwater sample for metals analysis was field-filtered using a 0.45 micron in-line filter.

The groundwater samples were analyzed for Total Petroleum Hydrocarbons - Diesel extended (Northwest Method NWTPH-Dx) volatile organic compounds (EPA Method 8260) and 8 RCRA metals (EPA Method 6020).

All soil and groundwater samples were immediately packed with ice and placed in an ice chest. The samples were delivered directly to Apex Labs, Tigard, Oregon under chain of custody documentation.

4.3 Sediment Sampling

Three sediment samples were collected from the east log pond (samples EP-1 through EP-3) and the inlet log pond (samples IP-1 and IP-2). The sampling was completed by AGI using a hand-operated AMS hand auger with a 3½-inch mud auger bit. The locations of the sediment samples are shown on Figures 4 and 5

The samples were collected from a depth of 6-12 inches within the sediment column. Attempts were made to minimize the amount of plant matter and woody material in the samples.

All of the sediment samples were analyzed for diesel and heavy oil (Northwest Method NWTPH-Dx), 8 RCRA metals, and polychlorinated biphenyls (PCBs) by EPA Method 8082. The sample from each pond that contained the highest concentration of heavy oil was also analyzed for polynuclear aromatic hydrocarbons (PAHs) by EPA Method 8270-SIM mode,

Sediment samples were subjected to silica gel treatment prior to analysis to minimize the effects on the analytical results from sawdust and woody material present in the sediments.

5.0 INVESTIGATION RESULTS

5.1 Subsurface Conditions

Throughout the site, the upland borings encountered topsoil and silty mud mixed with varying amounts of sawdust and wood chips to depths of 1-3 feet below ground surface (bgs). Groundwater was encountered at depths of 1-3 feet bgs. None of the recovered soils or groundwater displayed any field evidence of environmental contamination (i.e. sheen, odor).

The soil and groundwater analytical results are summarized in Tables 1 through 5. The laboratory report is included in Appendix B.

Although the soil and sediment samples were subject to silica gel treatment prior to analysis to try to minimize effects on the analytical results from sawdust and woody material present in the sediments, residual wood or plant debris may still be present in sediment samples after silica gel treatment. Although some or all of the reported heavy oil in the samples may be from such residual debris, the material reported as heavy oil will be treated in this discussion as a contaminant.

5.2 East Mill Building

5.2.1 Soil

The shallow soil around the boiler house and machine shop included significant debris including bricks, metal scraps, and a large steel plate that appears to be from the demolition of the nearby boiler house. The material encountered in the borings consisted of silty sandy fill with brick fragments.

Heavy oil was detected in the soil sample from boring EM-1 (sample #EM1-2) at a concentration of 721 milligrams per kilogram (mg/kg). No VOCs or PCBs were detected in the sample above the laboratory reporting limits. Various metals were detected in the sample, including arsenic (10.3 mg/kg) and chromium (41.2 mg/kg). Twelve of thirteen PAH compounds were detected in soil sample EM1-2 at concentrations ranging from 0.580 mg/kg to 56.7 mg/kg.

No diesel or heavy oil were detected in either of the other two soil samples (sample #EM2-3 and EM3-2). Various metals were detected in the samples, including arsenic (5.57 to 5.98 mg/kg) and chromium (38.3 to 53.2 mg/kg).

5.2.2 Groundwater

Groundwater was encountered in the borings at depths of $1\frac{1}{2}$ to $2\frac{1}{2}$ feet bgs. The groundwater sample from boring EM-2 contained no diesel, heavy oil or volatile organic compounds above the laboratory reporting limits. The only metal detected in the sample was barium (27.3 μ g/l).

5.3 West Mill Building

5.3.1 Soil

The shallow soil around the lathe room, filing room and power room included a thin topsoil underlain by brown silty material with abundant sawdust and wood chips to depths of at least 3½ feet bgs. No field evidence of contamination was observed in the soils recovered from any of the borings.

Heavy oil was detected in the soil samples at concentrations of 330 to 2,680 mg/kg. Various metals were detected in the samples, including lead (25.6 to 98.4 mg/kg) and chromium (30.1 to 52.0 mg/kg). No VOCs or PCBs were detected in soil sample WM3-1 above the laboratory reporting limits. Twelve of thirteen PAH compounds were detected in soil sample EM1-2 at concentrations ranging from 0.117 to 2.74 mg/kg.

7

5.3.2 Groundwater

Groundwater was encountered in the borings at a depth of 1 foot bgs. The groundwater sample from boring WM-1 contained no diesel, 500 μ g/l heavy oil, and no volatile organic compounds above the laboratory reporting limits. The only metals detected in the sample were barium (7.20 μ g/l), chromium (3.40 μ g/l) and lead (0.933 μ g/l).

5.4 Log Ponds - Sediment

5.4.1 East Log Pond

The three sediment samples collected from the east log pond contained no diesel, heavy oil, or PCBs above the laboratory reporting limits. The sediment samples contained various metals, including arsenic (less than 3.85 to 4.97 mg/kg), chromium (41.9 to 51.6 mg/kg) and lead (10.3 to 13.5 mg/kg).

5.4.2 Inlet Log Pond

The two sediment samples collected from the inlet log pond contained no diesel, heavy oil, PAHs or PCBs above the laboratory reporting limits. The sediment samples contained various metals, including arsenic (3.19 and 4.43 mg/kg), chromium (34.5 and 44.8 mg/kg) and lead (17.7 and 39 mg/kg).

5.5 Fill Area - West Log Pond

The two soil samples collected from the fill area (samples FILL1-1 and FILL2-1) contained no diesel, heavy oil, or PCBs above the laboratory reporting limits. The soil samples contained various metals, including arsenic (less than 3.12 to 3.58 mg/kg), chromium (29.4 to 40.4 mg/kg) and lead (9.65 to 20.3 mg/kg).

6.0 CONCEPTUAL SITE MODEL

The conceptual site model evaluates current and future uses with respect to potential exposure to the contaminants of concern. A summary of the conceptual site model is presented in Figure A. The conceptual site model evaluates the potential exposure to the contaminants of concern based on future land use as a natural marsh and wetland with no residents, permanent buildings or other public access.

6.1 Nature and Extent of Contamination

The compounds detected on the site consist of heavy-fraction petroleum hydrocarbons, polynuclear aromatic hydrocarbons and metals. The metals are naturally-occurring and are typically present within predictable ranges (i.e. background concentrations). In the absence of site-specific data for background levels of metals in soil and sediment, Oregon DEQ commonly refers to default background levels for soils and sediment (fresh water and marine) which are based on various sources of historical published data for Oregon and Washington. This data is commonly used as an initial screening tool for determining whether metals concentrations at a given site exceed regional background concentrations (Memo to DEQ cleanup managers, October 28, 2002).

The concentrations of metals in the pond sediments closely resemble the concentrations in the upland soils. This is expected, given that the ponds were created by excavating shallow depressions in the native marine bay mud sediments and using the excavated material for the levees around the ponds. For this reason, the published default background concentrations for marine sediments will be used in this report as background levels for both the pond sediments and the upland soils.

6.1.1 East Mill Building

One of the soil samples collected around the former machine shop (sample EM1-2) contained heavy oil, arsenic, cadmium, and lead at concentrations above default background levels for marine sediment and numerous PAH compounds. One of the other soil samples collected in the area (sample EM3-2) contained lead above background levels. No heavy oil or dissolved metals were detected in the groundwater sample from EM-3 except for barium (27.3 micrograms per liter).

The lateral and vertical extent of the contamination was not determined.

6.1.2 West Mill Building

All three soil samples collected around the former filing room, power room and lathe room contained heavy oil and lead at concentrations above default background levels for marine sediment. The sample containing the highest concentration of oil also contained numerous PAH compounds. Heavy oil and dissolved barium, chromium and lead were detected in the groundwater sample from boring EM-1.

The lateral and vertical extent of the contamination was not determined.

6.1.3 East Log Pond and Inlet Log Pond

The concentrations of metals in the pond sediment samples (Table 8) show a close similarity to

Anderson Geological, Inc.

the concentrations of metals in the upland soils (Table 2), with the exception of soil sample EM1-2, which appears to have been impacted by contaminants near the former machine shop. Lead concentrations are also slightly higher overall in the upland soil samples when compared to the sediment samples.

The concentrations of metals in the pond sediments are below the default background levels for marine sediments, with the exception of a slight elevation in the lead concentration in sample IP1-1, suggesting there has not been a significant impact to the sediments from the former mill operations.

6.1.4 Fill Area - West Log Pond

The soil samples from the filled area contained no contaminants above default background levels for marine sediment.

6.2 Current and Future Land Use

The Subject Property is currently vacant land consisting of woodland and marshes. The Subject Property is bordered to the north by Hoquarten Slough and vacant land beyond, to the east by a vacant woodland owned by the City of Tillamook, to the west by agricultural land (pasture), and to the south by commercial and residential properties across Front Street.

Approximately 4 acres of the Subject Property are located within the Tillamook City limits. The rest of the property is located within unincorporated Tillamook County while within the city's urban growth boundary and is therefore subject to city zoning as Open Space.

The future restoration plans for the subject property include the removal of the levees along Hoquarten Slough and interior areas of the property to allow unrestricted flow of flood waters, and possible removal of soil on the southeast corner of the Sadri property to depths of up to 8 feet bgs for the enhancement of the flood reduction benefits. No buildings, trails or other features providing public access to the site are planned. The field work associated with the restoration project is planned to commence in 2016. Details of the restoration of the Subject Property have not yet been finalized.

6.3 Contaminant Sources

The contaminants on the subject property consist of heavy oil, metals and polynuclear aromatic hydrocarbons in the shallow soils around the two former mill sites. The contaminants are believed to have originated from releases of wastes associated with the mill operations including equipment lubrication, general machining, and sharpening of cutting and log peeling equipment.

6.4 Human Receptors

The subject property consists of undeveloped woodland and wetland with no dwellings or other habitable structures. Current development plans for the subject property include the removal of the levees around the site and the possible excavation of shallow soil over portions of the site. No recreational uses such as hiking trails are planned for the former mill areas of the Subject Property. Based on these plans, future construction workers associated with the levee removal and excavation could be exposed to contamination on the site.

6.5 Ecological Receptors

Terrestrial and aquatic ecological receptors may be exposed to contaminants on the subject property. Terrestrial receptors are expected to include plants, invertebrates (worms), and birds. Game trails and tracks observed on the site indicate that deer use the property as a travel corridor and for possible bedding areas.

Aquatic receptors in the log ponds may include some fish species, although the low areas of the site (log ponds) are only periodically inundated with water during periods of heavy or prolonged precipitation, and no permanent resident fish species are expected in the area. It is expected that the final design of the flood restoration features on the subject property will take into account potential exposure of ecological receptors to contaminants.

A formal ecological risk assessment, including the identification of species of concern on the subject property, has not been conducted.

6.6 Exposure Pathways

Risk assessments completed at the former Tillamook City Shops located adjacent to the south of the Subject Property and at the former Erskine bulk fuel facility adjacent to the southeast corner of the subject property concluded that groundwater is not used for drinking water, and the drinking water exposure pathway was considered incomplete. Given the proximity of these properties to the Subject Property, neither the direct pathway (*Ingestion/inhalation from Tap Water*) nor the indirect soil pathway (*Leaching to Groundwater*) for groundwater ingestion are considered to be complete.

Based on the proposed use of the Subject Property, which will not include any permanent, occupied structures, the exposure pathway for *Vapor Intrusion into Buildings* will also be considered an incomplete pathway. Since no construction is proposed on the Subject Property except for soil excavation and re-grading, the exposure pathway for *Construction Worker* will also be considered incomplete.

There will be no residential or occupational uses of the Subject Property, therefore the exposure

pathway for Volatilization to Outdoor Air is considered to be incomplete.

Based on these assumptions, the following exposure pathways are considered complete and are discussed:

Soil

• Excavation Worker

Persons performing underground work and excavating soil on the Subject Property can be exposed to contaminants in the soil. However, none of the detected contaminants exceed risk-based concentrations for this pathway.

Groundwater

• Groundwater in excavation

Persons performing underground work on the Subject Property can come in contact with contaminants in groundwater, which is generally less than than 3 feet below ground surface. However, none of the detected contaminants exceed risk-based concentrations for this pathway.

In addition to these human exposure pathways, ecological exposure is possible through migration of contaminants to surface water and sediment in Hoquarten Slough and the former log ponds, and by long-term exposure to contamination in shallow soils by terrestrial organisms. Further evaluation of the potential exposure to ecological receptors is beyond the scope of this investigation.

Figure A - Conceptual Site Model Sadri Property Tillamook, Oregon

Date				Table #1									
2/14/2014	Pathway	Receptor	Is Pathway Complete?	Is GRBC Exceeded?	Comments								
	Ingestion,	Residential and/or Urban Residential	No	Yes	No residential or occupational receptors.								
	Dermal	Occupational	No	Yes	No soil contaminants exceed GRBCs for								
	Contact and Inhalation	Construction Worker	No	No	Construction Worker or Excavation Worker.								
		Excavation Worker	Yes	No									
	Volatilization to Outdoor Air	Residential and/or Urban Residential	No	No	No residential or occupational receptors.								
Soil	to Outdoor Air	Occupational	No	No									
	Vapor Intrusion Into	Residential and/or Urban Residential	No	No	No buildings on the property (current or								
	Buildings	Occupational	No	No	future).								
	Leaching to	Residential and/or Urban Residential	No	No									
	Groundwater	Occupational	No	No	Groundwater is not used for drinking water.								
	Ingestion & Inhalation	Residential and/or Urban Residential	No	No	Groundwater is not used for drinking water.								
	From Tap Water	Occupational	No	No	Groundwater is not used for drinking water								
	Volatilization	Residential and/or Urban Residential	No	No	No VOCs detected in groundwater.								
Groundwater	to Outdoor Air	Occupational	No	No	9								
	Vapor Intrusion Into	Residential and/or Urban Residential	No	No	No VOCs detected in groundwater. No								
	Buildings	Occupational	No	No	buildings on the property(current or future).								
	Groundwater in Excavation	Occupational	Yes	No	No groundwater contaminants exceed GRBCs.								
Ecological		Terrestrial, Surface Water, Sediment	Yes	Yes	Concentrations in sediment are consistent with upland soil concentrations except lead in one sample. Lead and PAHs in upland soil exceed background levels and JSCS SLVs for sediment.								

13

Notes:

GRBC - Generic Risk Based

Concentration

CMMP - Contaminated Media Management Plan

7.0 RISK-BASED ANALYSIS

It is understood that the proposed future use of the property is to permanently restore and protect tidal marsh by removing levees along Hoquarten Slough and removing soil on the southeast corner of the Subject Property. No buildings are proposed to be built on the site and no features such as hiking trails are proposed for public access to the impacted areas. Based on this proposed future land use, Anderson Geological proposes to apply human risk-based cleanup levels for excavation workers.

The risk to ecological receptors in soil and groundwater is evaluated using Oregon DEQ/ USEPA Portland Harbor Joint Source Control screening level values - SLVs (2007). The SLVs for soil exposure are based on ecological exposure to sediment derived from erosion of contaminated upland soil or stormwater sediment deposited in a surface water body.

When evaluating the risk to human and ecological receptors, default background concentrations will take precedence over the RBCs and SLVs.

7.1 Soil Screening

The contaminant concentrations in the upland soil samples, the human and ecological screening levels, and the default background concentrations are provided in Tables 1-3. Analytical values that exceed RBCs or SLVs and background concentrations were evaluated with respect to the conceptual site model(CSM).

Based on this screening, none of the contaminants in soil pose an unacceptable risk to human health.

With respect to ecological risk, soil sample EM1-2 contained arsenic and lead in excess of bioaccumulation SLVs and cadmium in excess of ecological toxicity SLVs. The concentrations of lead in five of the six soil samples near the production areas of the east and west mills also exceeded bioaccumulation SLVs.

These findings suggest the potential for elevated ecological exposure to contaminants in sediment from erosion of contaminated shallow soils into water bodies. Stormwater in the upland areas is presently isolated from the other surface water bodies (Hoquarten Slough, former log ponds) by levees, and the water in the upland areas seeps directly into the ground without eroding upland soils for deposition in surface water bodies. However, the future restoration of the site will include significant modification of surface water flow in the area which will require consideration of contaminant migration pathways.

7.2 Groundwater Screening

No RBCs for complete human exposure pathways were exceeded for groundwater.

The primary risk posed by contaminated groundwater is to ecological receptors. The lead concentration in the groundwater sample from the west mill exceeded the JSCS SLV. This SLV represents the maximum contaminant concentration that is protective of aquatic organisms from migration of groundwater-borne contaminants to surface water bodies. No other ecological SLVs were exceeded.

7.3 Sediment Screening

The contaminant concentrations in the log pond sediment samples, and the ecological screening levels and the default background concentrations are provided in Tables 6-8. Analytical values that exceed SLVs and background concentrations are highlighted.

Based on this screening, the only contaminant in sediment that poses an elevated ecological risk is lead in one of the inlet pond sediment samples (IP1-1). The lead in the sample exceeded the background level and the Oregon DEQ Level II ecological screening value. This SLV represents the maximum contaminant concentration that is protective of aquatic organisms with direct contact to the sediment. No other ecological SLVs were exceeded.

8.0 SUMMARY AND CONCLUSIONS

Anderson Geological completed ten hand-augered borings in the shallow soils and five hand-augered borings in the exposed sediment in the former log ponds. The purpose of the borings was to collect soil, sediment and groundwater samples to assess these media for possible contaminants resulting from the past use of the site as two log-peeling mills.

Samples were analyzed for petroleum hydrocarbons (diesel and heavy oil), metals, PCBs, VOCs, and PAHs. The analytical results were screened for elevated risk to human and ecological receptors, although a formal ecological risk assessment was not completed. The concentrations of metals were also compared to default background levels which were based on published data for marine sediments.

Contamination by heavy oil, polynuclear aromatic hydrocarbons and metals was discovered in the shallow soil, and contamination by heavy oil and metals was discovered in the groundwater in the log peeling and mechanical areas on the two mill sites. The source of the contamination is assumed to be from releases of lubricating oils and waste products from former operations at the mills. The sediment in one area of the inlet log pond contained a slightly elevated concentration of lead.

A conceptual site model (CSM) was developed for the site to identify potential pathways for exposure of human and ecological receptors to the contamination. No unacceptable risks to human health were identified for the complete exposure pathways based on the CSM. The preliminary risk-based screening identified potential unacceptable risks for the following pathways:

Ecological toxicity and bioaccumulation in wildlife by exposure to lead, arsenic, cadmium and PAHs in soil. This exposure pathway includes the erosion of contaminated soils and their deposition as sediment in surface waters. This pathway may not be complete at the present time due to the presence of levees that prevent storm water runoff in the former mill areas from entering the log ponds and Hoquarten Slough. However, modifications to the site are planned that will result in a more direct connection between Hoquarten Slough and the interior portions of the subject property. Future modifications undertaken in this area during the Southern Flow Corridor project should take into account potential ecological exposures to the identified contaminants.

Ecological toxicity and bioaccumulation in wildlife by exposure to lead in groundwater and surface water. This exposure pathway includes migration of contaminants to surface waters via groundwater discharge to surface water. Future ecological risk assessments should address possible ecological exposures to contaminants in surface water.

9.0 LIMITATIONS

This report was prepared for Tillamook County for the property Sadri Property, tax lot 200, map 1S1025, Tillamook, Oregon. This report is not intended for use by others without written consent from Anderson Geological, Inc. Within the limitations of scope, schedule and budget, our services have been executed in accordance with generally accepted environmental science practices in this area at the time the report was prepared. No warranty or other conditions, expressed or implied, should be understood.

Our interpretation of subsurface conditions in this study is based on field observations and chemical analytical data from a limited number of sampling locations. It is possible that contamination exists in areas that were not explored, sampled, or analyzed.

ANDERSON GEOLOGICAL, INC.

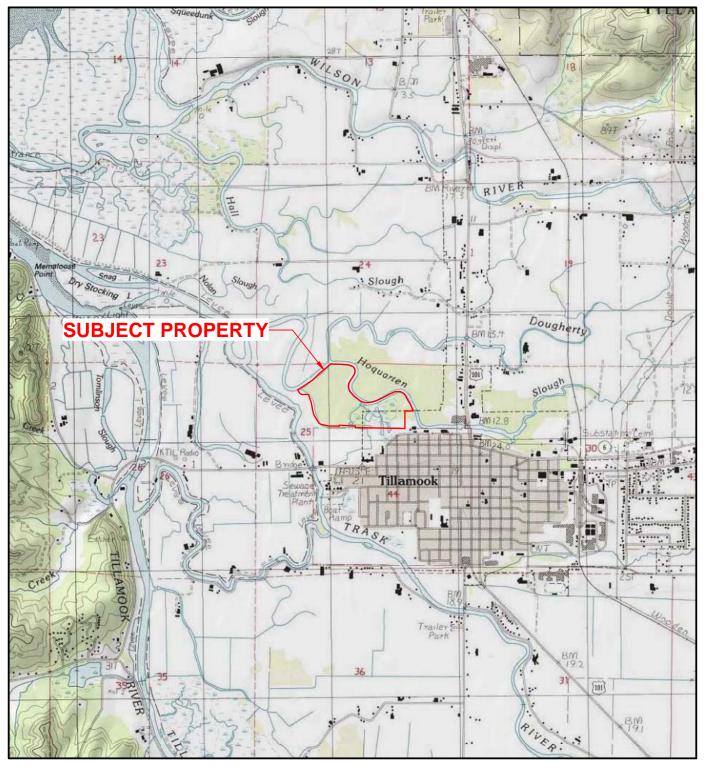
Expires 3/31/2014

Erik Anderson, R.G. Hydrogeologist

References

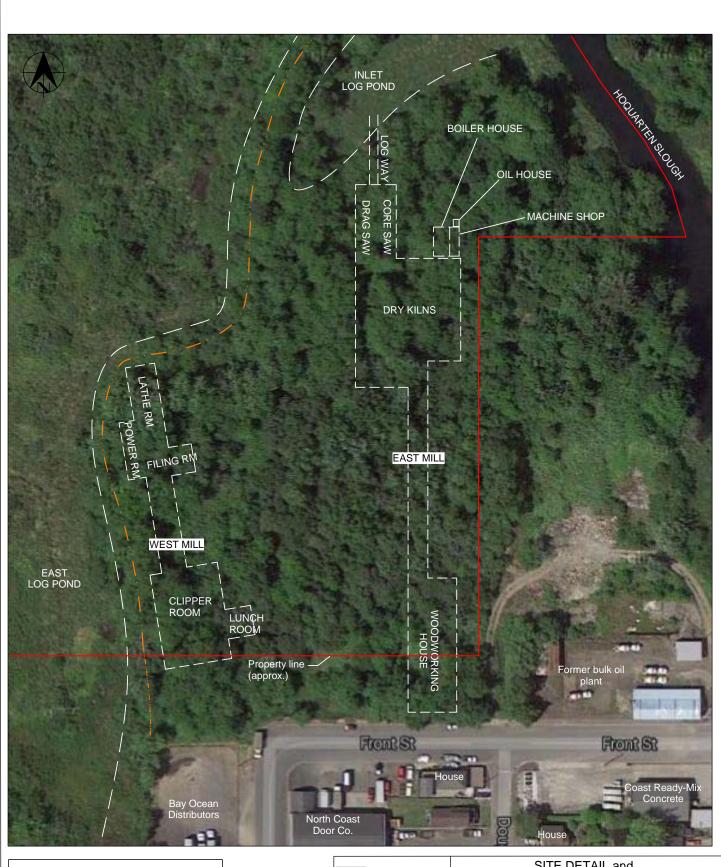
Anderson Geological, Inc., 2013. Phase I Environmental Site Assessment, November 22, 2013.

DEQ, 1998, Guidance for Ecological Risk Assessment: Levels I, II, III and IV. April 1998. Level II Screening Values (Tables 1 and 2) updated December 2001.

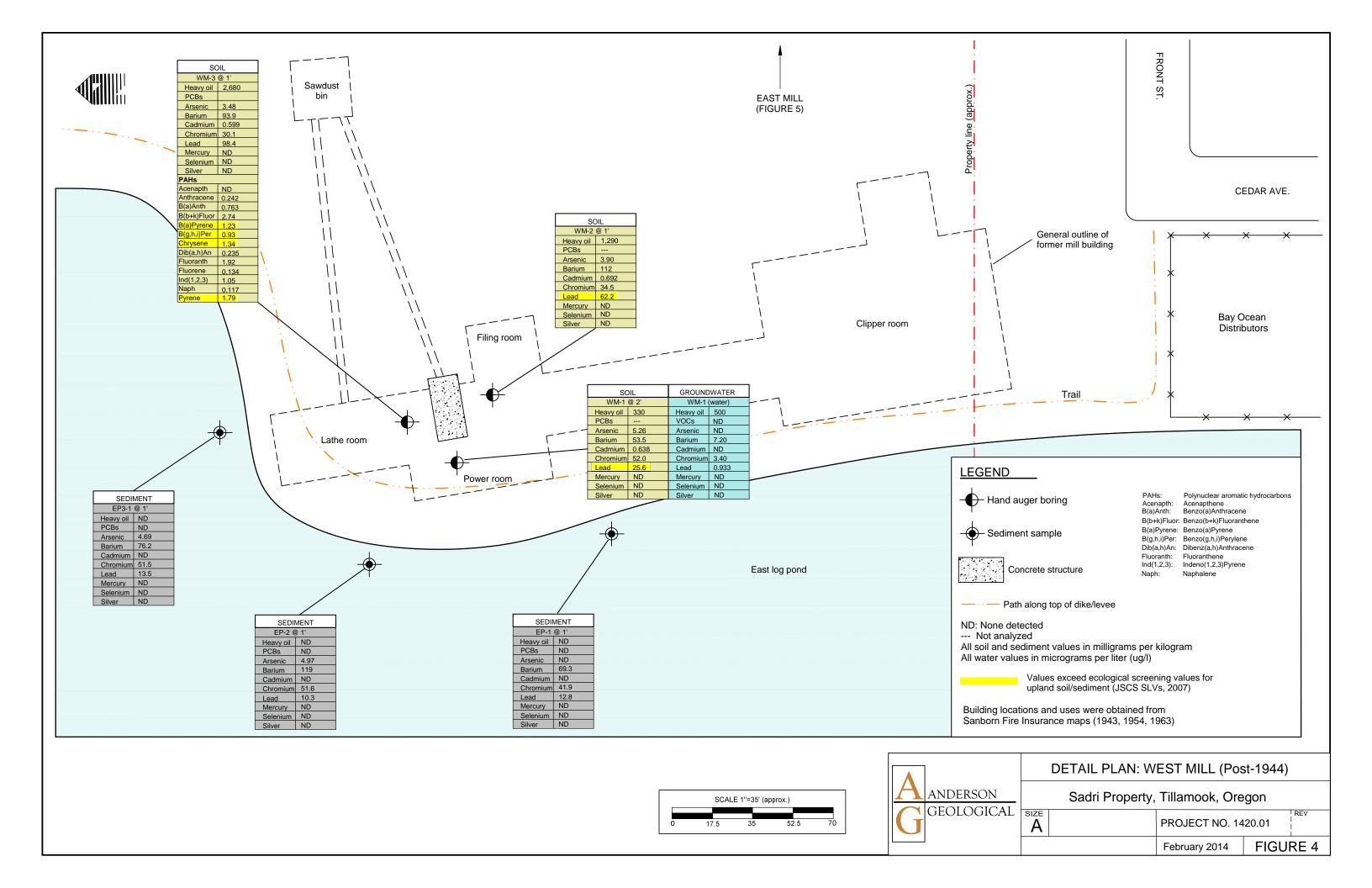

DEQ, 2003, Risk-Based Cleanup Rules for the Remediation of Petroleum-Contaminated Sites (September 22, 2003). Revised June 7, 2012.

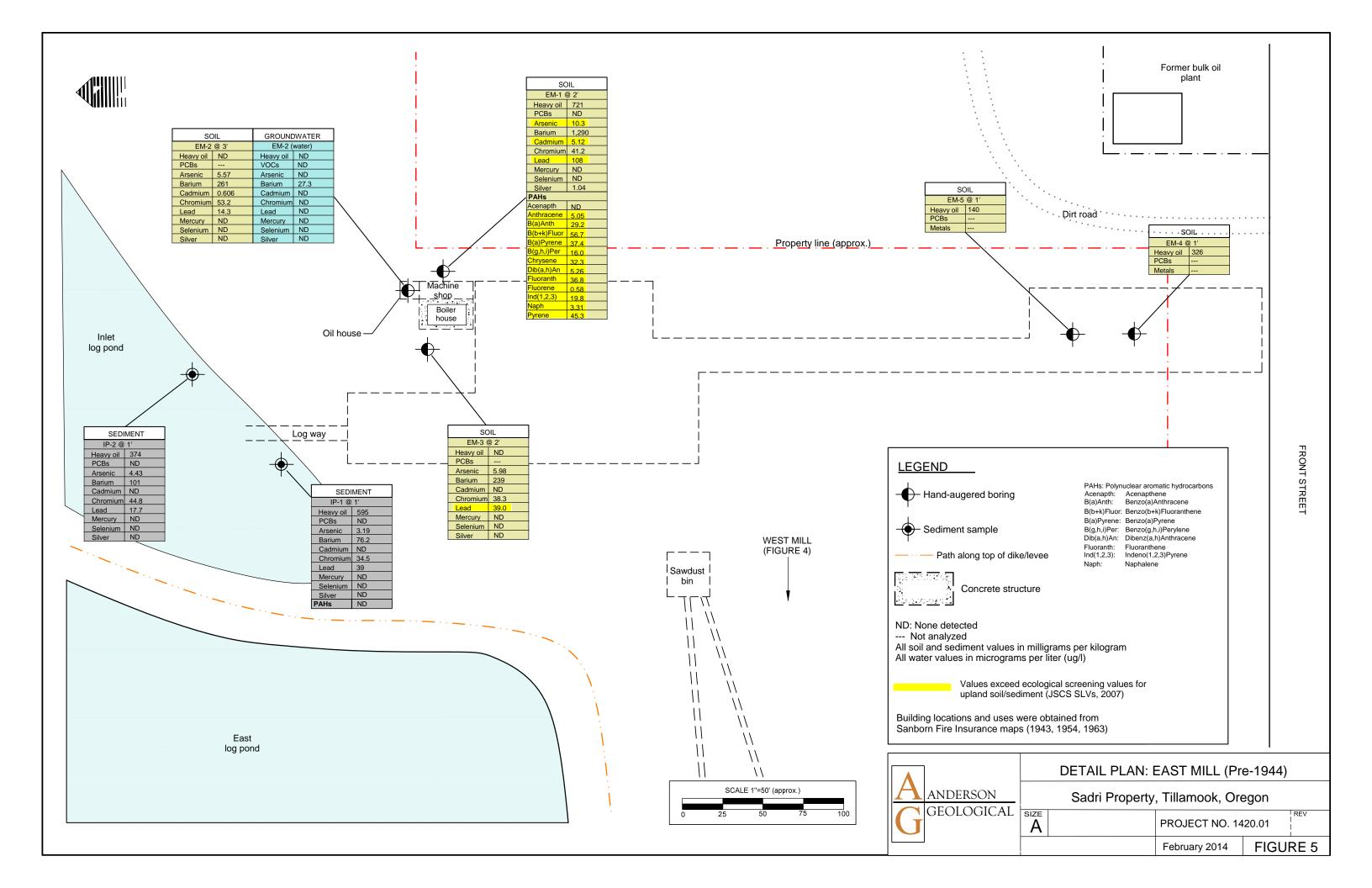
DEQ/EPA, 2007. Portland Harbor Joint Source Control Strategy. December 2005. Table 3-1 of Screening Level Values, updated on July 16, 2007.

17


0 P T	Decree H. France and the Comp. A company
SADRI PROPERTY, TILLAMOOK, OREGON	PHASE II ENVIRONMENTAL SITE ASSESSMENT
	FIGURES
Anderson Geological, Inc.	
	Project #1420.01

		SITE LC	CATION M	1AP		
ANDERSON		Sadri Property	, Tillamook, C	regon		
GEOLOGICAL	A		PROJECT NO.	1420.01		
			February 2014	FIGURE 1		




LEGEND

Path along top of dike/levee

SITE DETAIL and
FORMER MILL FEATURES
Map 1S1025, Tax Lot 200, Tillamook, Oreg

SADRI PROPERTY, TILLAMOOK, OREGON	PHASE II ENVIRONMENTAL SITE ASSESSMENT
	TABLES
Anderson Geological, Inc.	

Table 1 Soil Analysis Summary Sadri Property, Tillamook, Oregon

					etroleur drocarbo		PAHs													
Sample Number	Sample Location	Sample Depth (ft)	Date Collected	Gasoline	Diesel	Неаvy ОіІ	Acenaphthene	Anthracene	Benz(a)anthracene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Benzo(a)pyrene	Benzo(g,h,i)perylene	Chrysene	Dibenz(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-cd)pyrene	Naphthalene	Pyrene
WM1-2	West Mill	2	1/21/2014	_	<45.4	330	_	-	-	_	_	-	_	-	_	-	-	_	-	_
WM2-1	West Mill	1	1/21/2014	-	<67.8	1,290	-	-	-	-		-	-	-	-	-	-	-	-	-
WM3-1	West Mill	1	1/21/2014	_	<956	2,680	<0.10	0.242	0.763		.74	1.23	0.93	1.34	0.235	1.92	0.134	1.05	0.117	1.79
EM1-2	East Mill	2	1/21/2014	_	<207	721	<0.0955	5.05	29.2		6.7	37.4	16.0	32.3	5.26	36.8	0.580	19.8	3.31	45.3
EM2-3	East Mill	3	1/21/2014	_	<41.1	<82.1	-	-	-	_	-	-	-	-	-	-	-	-	-	-
EM3-2	East Mill	2	1/21/2014	_	<68.1	<136	_	-	-	_	-	_	-	-	-	-	-	_	-	-
EM4-1	East Mill	1	1/22/2014	_	<42.8	326	< 0.0194	<0.0194	<0.0194	<0.	0194	<0.0194	<0.0194	<0.0194	<0.0194	<0.0194	<0.0194	<0.0194	0.02	0.0195
EM5-1	East Mill	1	1/22/2014	_	<41.3	140	_	-	-	-	_	-	-	-	-	-	-	-	-	-
FILL1-1	Fill Area	1	1/22/2014	ND	ND	ND	-	-	-	-	-	-	-	-	-	-	-	-	-	-
FILL2-1	Fill Area	1	1/22/2014	ND	ND	ND	-	-	-	_	-	-	-	-	-	-	-	-	-	_
Generic Risk	Generic Risk-Based Levels (Occupational)																			
	To Outdoor Air			69,000	>Max	>Max	>Max	>Max	NV	NV	NV	NV	ne	>Csat	NV	NV	NV	NV	99	>Csat
Excavation Worker			>MAX	>MAX	>MAX	>Csat	>Max	590	590	5,900	59	ne	57,000	59	>Csat	>Max	590	16,000	>Csat	
JSCS screening level values*																				
Toxicity				-	_	ı	0.30	0.845	1.05	ne	13	1.45	0.30	1.29	1.30	2.23	0.536	0.100	0.561	1.52
										-										

ND- None detected

>Csat: The soil RBC exceeds the saturation limit of the soil

>Max: The constituent RBC for this pathway is greater than 100,000 mg/kg.

NV: This chemical is considered "non-volatile" for purposes of the exposure calculations

ne - Not established

⁻ Sample not tested

^{*} Portland Harbor Joint Source Control Strategy (JSCS) screening level values (SLV) from Oregon DEQ/EPA, 2007

Table 2 Soil Analysis Summary Sadri Property, Tillamook, Oregon

					ı	Polychic	rinated	Bipheny	rls (PCB	s)		Metals							
Sample Number	Sample Location	Sample Depth (ft)	Date Collected	Aroclor 10106	Aroclor 1221	Aroclor 1232	Aroclor 1242	Aroclor 1248	Aroclor 1254	Aroclor 1260	TOTAL AROCLORS	Arsenic	Barium	Cadmium	Chromium	Lead	Mercury	Selenium	Silver
WM1-2	West Mill	2	1/21/2014	_	_		_	_		_	_	5.26	53.5	0.638	52.0	25.6	<0.176	<2.20	<0.440
WM2-1	West Mill	1	1/21/2014		_	_	_	_		_	_	3.90	112	0.636	34.5	62.2	<0.176	<3.14	<0.629
WM3-1	West Mill	1	1/21/2014	-0 0201	<0.0201	<0.0201	-0 0201	<0.0201	-0 0201	<0.0201	<0.1407	3.48	93.9	0.599	30.1	98.4	<0.232	<2.30	<0.029
EM1-2	East Mill	2	1/21/2014					< 0.0193				10.3	1,290	5.12	41.2	108	<0.167	<2.09	1.04
EM2-3	East Mill	3	1/21/2014	-	-	-	-	-	-	-	-	5.57	261	0.606	53.2	14.3	<0.156	<1.96	<0.391
EM3-2	East Mill	2	1/21/2014	_	_	_	_	_	_	_	_	5.98	239	<0.683	38.3	39.0	<0.273	<3.42	<0.683
EM4-1	East Mill	1	1/22/2014	< 0.0190	< 0.0190	< 0.0190	< 0.0190	<0.0190	< 0.0190	<0.0190	<0.133	-	_	_	-	-	_	-	_
EM5-1	East Mill	1	1/22/2014	-	-	-	-	-	_	_	-	_	_	_	_	-	-	-	_
FILL1-1	Fill Area	1	1/22/2014	<0.0279	<0.0279	<0.0279	<0.0279	<0.0279	<0.0279	<0.0279	<0.195	<3.12	67.6	<0.624	29.4	9.65	<0.250	<3.12	<0.624
FILL2-1	Fill Area	1	1/22/2014	< 0.0231	<0.0231	<0.0231		<0.0231		<0.0231	<0.162	3.58	78.2	<0.512	40.4	20.3	<0.205	<2.56	<0.512
Gonorio Bick	-Based Levels (Occ	unational\				•				•									
	To Outdoor Air	upational)		ne	ne	ne	ne	ne	ne	ne	NV	NV	NV	NV	NV	NV	NV	ne	NV
Excavation W				ne	ne	ne	ne	ne	ne	ne	120	370	>Max	4.300	>Max	800	2.600	ne	4,300
				110	110	110	110	110	110	110	120	010	riviax	1,000	ZIVIGA	000	2,000	110	1,000
JSCS SLV screening level values*																			
Bioaccumulation				ne	ne	ne	ne	ne	ne	ne	0.00039	7	ne	1	ne	17	0.07	2	ne
Toxicity				0.53	ne	ne	ne	1.5	0.30	0.20	0.676	33	ne	4.98	111	128	1.06	5	5
Default backgi																			
Soil		ne	ne	ne	ne	ne	ne	ne	ne	7	ne	1	42	17	0.07	2	1		
Marine Sediment***				ne	ne	ne	ne	ne	ne	ne	ne	9	ne	0.9	140	22	0.3	0.5	0.4

>Csat: The soil RBC exceeds the saturation limit of the soil

>Max: The constituent RBC for this pathway is greater than 100,000 mg/kg.

NV: This chemical is considered "non-volatile" for purposes of the exposure calculations

ne - Not established

ND- None detected

Sample not tested

Highlighted cells exceed the indicated screening values **and** background concentrations.

^{*} Portland Harbor Joint Source Control Strategy (JSCS) screening level values (SLV) from Oregon DEQ/EPA, 2007

^{**} The naturally-occurring background concentration (9 mg/kg) is used in lieu of this value.

^{***} Marine sediment background values should more accurately represent the site soils given their origin as marine bay sediment.

Table 3 Soil Analysis Summary Sadri Property, Tillamook, Oregon

EM1-2 East Mill 2 1/21/2014 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0.0638 <0						VOCs													втех			
WM2-1 West Mill			Depth		1,1-Dichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	1,2-Dibromoethane	1,2-Dichloroethane	1,2,4-Trimethylbenzene	1,3,5-Trimethylbenzene	Methylene chloride	Naphthalene	Tetrachloroethene	Trichloroethene	-		Benzene	Toluene	Ethylbenzene	Xylenes	
WM2-1 West Mill	14/144			1/01/0011																		
WM3-1 West Mill					_	-	_	_	_			_	_	-	_				_	-	_	
EM1-2					-	-	-	-	-	-		-	-	-	-					-	-	
EM2-3																					<0.2162	
EM3-2							<0.0638	<0.0638							<0.0638				<0.128	<0.0638	<0.1918	
EM4-1					_	-	-	_							-				-	-	-	
EM5-1					_	-	-	_												-		
FILL1-1 Fill Area 1 1/22/2014					<0.0713	<0.0713	< 0.0713	<0.0713	< 0.0713	<0.143	<0.143	<0.713	<0.285	<0.0713	<0.0713	<0.0713	<0.0713	< 0.0356	<0.0713	<0.0713	<0.2143	
FILL2-1			1		-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	
Generic Risk-Based Levels (Occupational) Color Risk-Based Levels (Occupati	FILL1-1	Fill Area	1	1/22/2014	_	-	-	_	-	-	-	-	-	_	_	_	_	-	_	_	_	
Volatilization To Outdoor Air >Csat >Max >Csat 1,000 >Csat 830 99 >Csat 96 >Csat 89 50 >Csat 160 : Excavation Worker >Csat 17,000 >Max 230 5,000 54,000 86,000 75,000 16,000 44,000 3,400 >Max 830 9,500 >Max 44,000 : JSCS screening level values*	FILL2-1	Fill Area	1	1/22/2014	_	_	-	-	_	_	-	-	-	_	_	_	_	-	_	_	-	
JSCS screening level values*	Volatilization To Outdoor Air																				>Csat	
				>USat	17,000	>ivldX	230	5,000	54,000	60,000	13,000	10,000	44,000	3,400	>IVIdX	630	9,300	>IVIdX	44,000	>08at		
TOXICITY THE	Toxicity	ing iovoi values			ne	ne	ne	ne	ne	ne	ne	ne	ne	0.50	2.10	ne	2.10	ne	ne	ne	ne	

ND- None detected

>Csat: The soil RBC exceeds the saturation limit of the soil

>Max: The constituent RBC for this pathway is greater than 100,000 mg/kg.

NV: This chemical is considered "non-volatile" for purposes of the exposure calculations

ne - Not established

⁻ Sample not tested

^{*} Portland Harbor Joint Source Control Strategy (JSCS) screening level values (SLV) from Oregon DEQ/EPA, 2007

Table 4
Groundwater Analysis Summary
Sadri Property, Tillamook, Oregon

					etroleur drocarbo	Metals										
Sample Number	Sample Location	Sample Depth (ft)	Date Collected	Gasoline	Diesel	Heavy Oil	Arsenic	Barium	Cadmium	Chromium	Lead	Mercury	Selenium	Silver		
10/24/ 10/	144		1/01/0011		100				0.000					2 222		
WM1-W EM2-W	West Mill East Mill	0-3 0-3	1/21/2014 1/21/2014	_	<196 <189	500 <377	<1.00	7.20 27.3	<0.200	3.40 <1.00	0.933 < 0.200	<0.080		<0.200		
EIVIZ-VV	East Willi	0-3	1/21/2014	_	<109	2311	<1.00	21.3	<0.200	<1.00	<0.200	<0.000	<1.00	<0.200		
Generic Risk	-Based Levels (C	Occupationa	al)													
Groundwater in Excavation				14,000	>S	>S	5,800	2.5E+07	57,000	>S	>S	>S	ne	1.0E+06		
JSCS Screen	ning Level Values	*		ne	ne	ne	3.10	ne	0.094	11	0.54	0.012	35	0.12		

Generic Risk-Based Levels are based on Risk-Based Decision Making for the Remediation of Petroleum-Contaminated Sites, Oregon DEQ, Sept., 2003 (revised June 7, 2C >S: This groundwater RBC exceeds the solubility limit

NV- Not volatile

ne - Not established

All values in micrograms per liter (ug/l)

- Sample not tested

^{*} Portland Harbor Joint Source Control Strategy (JSCS) screening level values (SLV) from Oregon DEQ/EPA, 2007 (ecological exposure)

Table 5 Groundwater Analysis Summary Sadri Property, Tillamook, Oregon

			Date Collected		Volatile Organic Compounds														втех			
Sample Number	Sample Location	Sample Depth (ft)		1,1-Dichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	1,1-Dichloroethane	1,2-Dibromoethane	1,2-Dichloroethane	1,2,4-Trimethylbenzene	1,3,5-Trimethylbenzene	Naphthalene	Tetrachloroethene	Trichloroethene	1,1,1-Trichloroethane	Vinyl chloride	Benzene	Toluene	Ethylbenzene	Xylenes		
WM1-W	West Mill	0-3	1/21/2014	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<1.00	<1.00	<2.00	<0.500	<0.500	<0.500	<0.500	<0.250	<0.500	~1 OO	<1.50		
	East Mill	0-3	1/21/2014	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<1.00	<1.00	<2.00	<0.500	<0.500	<0.500	<0.500	<0.250	<0.500	<1.00	<1.50		
Generic Risk	-Based Levels (C in Excavation	Occupationa	al)	43,000	24,000	14,000	10,000	28	630	1,700	23,000	500	5,400	430	1,100,000	1,200	1,700	210,000	<0.500 <1.00 < <0.500 <1.00 < 210,000 4,400 2			
JSCS Screening Level Values*				ne	ne	ne	47	0.033	0.73	ne	ne	12	0.12	0.17	11	0.015	1.2	9.8	7.3	200		

ND- None detected

ne - Not established

All values in micrograms per liter (ug/l)

- Sample not tested

Only selected compounds are listed. See laboratory report for complete list of analytes.

>S: This groundwater RBC exceeds the solubility limit

^{*} Portland Harbor Joint Source Control Strategy (JSCS) screening level values (SLV) from Oregon DEQ/EPA, 2007

Table 6
Sediment Analysis Summary - TPH, PCBs
Sadri Property, Tillamook, Oregon

					Petroleun		Polychlorinated Biphenyls (PCBs)									
Sample Number	Sample Location	Depth (ft)	Date	Gasoline	Diesel	Heavy Oil	Aroclor 1016	Aroclor 1221	Aroclor 1232	Aroclor 1242	Aroclor 1248	Aroclor 1254	Aroclor 1260	TOTAL AROCLORS		
EP1-1	East Pond	1	1/21/2014	-	<90.3	<181	< 0.365	< 0.365	< 0.365	< 0.365	< 0.365	< 0.365	< 0.365	<2.55		
EP2-1	East Pond	1	1/21/2014	-	<61.2	<122	<0.293	<0.293	<0.293	<0.293	<0.293	<0.293	< 0.293	<2.051		
EP3-1	East Pond	1	1/21/2014	-	<93.8	<188	< 0.367	< 0.367	< 0.367	< 0.367	< 0.367	< 0.367	< 0.367	<2.569		
IP1-1	Inlet Pond	1	1/22/2014	_	<85.5	595	<0.290	<0.290	<0.290	<0.290	<0.290	<0.290	<0.290	<2.03		
IP2-1	Inlet Pond	1	1/22/2014	_	<105	374	<0.341	<0.341	<0.341	<0.341	<0.341	<0.341	<0.341	<2.387		
Level II Ecolog	ical Screening Level	Values (a)													
Sediment - Fresh Water					ne	ne	ne	ne	ne	ne	21	7	ne	34		
Sediment - Marine					ne	ne	ne	ne	ne	ne	ne	ne	ne	22		
Sediment - Bio	accumulation			ne	ne	ne	420	ne	ne	2	4	10	ne	ne		

⁻ Sample not analyzed

ne - Not established

⁽a) Level II Ecological Screening Values from Table 2 of DEQ Guidance for Ecological Risk Assessment, January 1998.

Table 7
Sediment Analysis Summary - PAHs
Sadri Property, Tillamook, Oregon

Sample Number				Polynuclear Aromatic Hydrocarbons (PAHs)														
	Sample Location	Depth (ft)	Date	Acenaphthene	Anthracene	Benz(a)anthracene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Benzo(a)pyrene	Benzo(g,h,l)perylene	Chrysene	Dibenz(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-cd)pyrene	Naphthalene	Phenanthrene	Pyrene
EP1-1	East Pond	1	1/21/2014	_	_	_	_	_		_	-	-	_		_	_	_	_
EP2-1	East Pond	1	1/21/2014	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_
EP3-1	East Pond	1	1/21/2014	_	-	-	-	-	_	-	_	_	_	-	_	-	-	_
IP1-1	Inlet Pond	1	1/21/2014	<0.0276	<0.0276	<0.0276	<0.0276	<0.0276	<0.0276	<0.0276	<0.0276	<0.0276	<0.0276	<0.0276	<0.0276	<0.0276	<0.0276	<0.0276
IP2-1	Inlet Pond	1	1/21/2014	-	-	-	-	-	_	-	-	-	-	-	_	-	-	-
Level II Ecolo	gical Screening Level V	alues (a)																
Sediment - Marine				7	47	75	1,800	1,800	89	670	107	6	113	21	600	35	86	152
Sediment - Bioaccumulation				ne	ne	ne	ne	ne	100	ne	ne	ne	ne	ne	ne	ne	ne	ne

⁻ Sample not analyzed

ne - Not established

⁽a) Level II Ecological Screening Values from Table 2 of DEQ Guidance for Ecological Risk Assessment, January 1998.

Table 8
Sediment Analysis Summary - Metals
Sadri Property, Tillamook, Oregon

			Date	Metals								
Sample Number	Sample Location	Depth (ft)		Arsenic	Barium	Cadmium	Chromium	Lead	Mercury	Selenium	Silver	
EP1-1	East Pond	1	1/21/2014	<3.85	69.3	<0.771	41.9	12.8	<0.308	<3.85	<0.771	
EP2-1	East Pond	1	1/21/2014	4.97	119	0.770	51.6	10.3	<0.257	<3.21	< 0.642	
EP3-1	East Pond	1	1/21/2014	4.69	76.2	<0.770	51.5	13.5	<0.308	<3.85	<0.770	
IP1-1	Inlet Pond	1	1/22/2014	3.19	76.2	< 0.639	34.5	39	<0.255	<3.19	< 0.639	
IP2-1	Inlet Pond	1	1/22/2014	4.43	101	<0.657	44.8	17.7	<0.263	<3.28	<0.657	
Default Backgro	ound Concentrations(b)	ı										
Sediment - Marir				9	ne	0.9	140	22	0.3	0.5	0.4	
Oregon DEQ Lev	el II Screening Values (c)											
Sediment - Marir	ne			7	48	0.7	52	19	0.1	1	0.7	
Sediment - Bioad	ccumulation	4	ne	0.003	4,200	128	ne	0.1	ne			

All values in milligrams per kilogram (mg/kg)

Highlighted cells exceed background concentration levels for marine sediments and Level II SLVs.

- (a) Level II Ecological Screening Values from Table 2 of DEQ Guidance for Ecological Risk Assessment, January 1998.
- (b) Background sediment concentrations based on memo to DEQ Cleanup Project managers from DEQ Toxicology Workgroup (10/28/2002)
- (c) From Guidance for Ecologcial Risk Assessment, Level II Screening Level Values, Table 2 (December 2001)

⁻ Sample not analyzed

ne - Not established

SADRI PROPERTY, TILLAMOOK, OREGON	PHASE II ENVIRONMENTAL SITE ASSESSMENT
	APPENDIX A
	Exploratory Boring Logs
Anderson Geological, Inc.	D 1 / #1400 01
	Project #1420.01

$\frac{A}{G}$	GEOLOG			BOREHOLE LITHOLOGIC LOG							
			BORING #WI	M-1	PROJECT # 1420.01	SHEET 1 OF 1					
Geologist	ame: Sadri : E. Anders ethod: Hai	son	-	amook, OR		Start/End Date: 1/21/14 Borehole Depth: 3.5' Borehole diameter: 3"					
DEPTH (ft.)	WELL SMPL PID SAMPL #					SOIL DESCRIPTION					
1											
2			0	WM1-2		0'-1': Dark brown silty topsoil with ab	undant organic				
3			0	0		matter, damp.	undant organic				
4						1'-1.5': Wood chips and sawdust with	silty sand (FILL).				
5						wet.	,,				
6						1.5'-2.5': Med. gray silty clay FILL w/ minor (wood chips), high plasticity, wet. Odor of decay (H2S).					
7							or of organic				
8											
9						2.5'-3.5': Med. gray-brown silty CLAY wood chips and sawdust.	w/abundant				
10						Static water level: 1' bgs					
11						Static water level: 1' bgs					
12											
13						Screened boring from 0'-3.5', collecte	d water sample				
14						w/ peristaltic pump.					
15											
16											
17											
18											
19											
20											
21											
22											
23											
24											
25											

A	ANDERG	20148			В	OREHOLE LITHOLOGIC LO	G				
_	ANDERS			BORING #W	M-2	PROJECT # 1420.01	SHEET 1 OF 1				
Geologi	Name: Sadr st: E. Ander Method: Ha	son		lamook, OR		Start/End Date: 1/21/14 Borehole Depth: 1.5' Borehole diameter: 3"					
DEPTH (ft.)	WELL DETAILS	SMPL INTVL	PID	SAMPLE #		SOIL DESCRIPTION					
1			0	WM2-1							
2			0	0		01.0.51 Poul					
3						0'-0.5': Dark gray silty topsoil with abomatter, damp.	unuani Organiic				
4						0.5'-1.5': Med. brown silty FILL with al	oundant organic				
5						matter (wood chips, sawdust, roots),	wet.				
6											
7											
8											
9											
10											
12											
13											
14											
15											
16											
17											
18											
19											
20											
21											
22											
23											
24											
25											

A	ANDERG	1011 4h			В	OREHOLE LITHOLOGIC LO	G				
_	ANDERS			BORING #W	M-3	PROJECT # 1420.01	SHEET 1 OF 1				
Geologi	Name: Sadr st: E. Ander Method: Ha	son		lamook, OR		Start/End Date: 1/21/14 Borehole Depth: 1.2' Borehole diameter: 3"					
DEPTH (ft.)	WELL DETAILS	SMPL INTVL	PID	SAMPLE #		SOIL DESCRIPTION					
1			0	WM3-1							
2			0			O'-1': Dark brown silty topsoil with abundant organic					
3						matter, damp.	undant organic				
4						1'-1.2': Dark brown dense woody mate	erial (wood				
5						chips), wet.					
6											
7											
8											
9											
10											
11											
13											
14											
15											
16											
17											
18											
19											
20											
21											
22											
23											
24											
25											

A	A ANDERSON %			BOREHOLE LITHOLOGIC LOG						
			BORING #EN	/ I-1	PROJECT # 1420.01	SHEET 1 OF 1				
Geologi	Name: Sadr st: E. Ander Method: Ha	son		amook, OR		Start/End Date: 1/21/14 Borehole Depth: 2' Borehole diameter: 3"				
DEPTH (ft.)	WELL SMPL PIE			SAMPLE #		SOIL DESCRIPTION				
1			0							
2			0	0 EM1-2						
3						0'-2': Med. gray/brown loose sandy FILL w/ abundant brick fragments, damp. Wet at 1.5'.				
4										
5										
6										
7										
8										
9										
10										
11										
12										
13										
15										
16										
17										
18										
19										
20										
21										
22										
23										
24										
25										

A	ANDERS	COM 48			В	OREHOLE LITHOLOGIC LO	CLOG				
	ANDERS			BORING #EI	VI-2	PROJECT # 1420.01	SHEET 1 OF 1				
Geologi	Name: Sadr st: E. Ander Method: Ha	son		lamook, OR		Start/End Date: 1/21/14 Borehole Depth: 3' Borehole diameter: 3"					
DEPTH (ft.)	WELL DETAILS	SMPL INTVL	PID	SAMPLE #		SOIL DESCRIPTION					
1				0							
2			0	0 EM2-3							
3						 0'-3': Med. gray/brown loose sandy Fl brick fragments, damp. Wet at 2.5'. 	LL w/ abundant				
4											
5						Screened boring from 0'-3', collected	water sample w/				
6						peristaltic pump.					
7											
8											
9											
10											
11											
12											
13											
14											
15											
16											
17											
18											
19											
20											
21											
22											
23											
24											
25											

	A ANDERSON *				G					
	GEOLOG		BORING #EI	W-3	PROJECT # 1420.01	SHEET 1 OF 1				
Geologi	Name: Sadr st: E. Ander Method: Ha	son		amook, OR		Start/End Date: 1/21/14 Borehole Depth: 3' Borehole diameter: 3"				
DEPTH (ft.)	WELL DETAILS	SMPL INTVL	PID	SAMPLE #		SOIL DESCRIPTION				
1			0							
2			0	EM3-2						
3				0'·		0'-3': Med. gray/brown loose sandy FILL w/ abundant brick fragments, damp. Wet at 2.5'.				
4										
5										
6										
7										
8										
9										
10										
11										
12										
13										
15										
16										
17										
18										
19										
20										
21										
22										
23										
24										
25										

A	ANDERG			В	OREHOLE LITHOLOGIC LO	G					
				BORING #EI	VI-4	PROJECT # 1420.01	SHEET 1 OF 1				
Geologi	Name: Sadr st: E. Ander Method: Ha	son		lamook, OR		Start/End Date: 1/22/14 Borehole Depth: 2' Borehole diameter: 3"					
DEPTH (ft.)	WELL DETAILS	SMPL INTVL	PID	SAMPLE #		SOIL DESCRIPTION					
1				EM4-1							
2			0	0		0141 Mail Insurant City Fill 1					
3						O'-1': Med. brown silty FILL w/ sawdust and wood chips, gravel at 1'-1.2', damp.					
4						1'-2': Sawdust and wood chips, damp	. Refusal in hard				
5						woody debris.					
6											
7											
8											
9											
10											
11											
13											
14											
15											
16											
17											
18											
19											
20											
21											
22											
23											
24											
25											

A	ANDERG			OREHOLE LITHOLOGIC LO	G						
	ANDERS			BORING #EI	VI-5	PROJECT # 1420.01	SHEET 1 OF 1				
Geologi	Name: Sadr st: E. Ander Method: Ha	son		lamook, OR		Start/End Date: 1/22/14 Borehole Depth: 2' Borehole diameter: 3"					
DEPTH (ft.)	WELL DETAILS	SMPL INTVL	PID	SAMPLE #		SOIL DESCRIPTION					
1				EM5-1							
2			0	0							
3						O'-1': Med. brown silty FILL w/ sawdust and wood chips, damp. Wet at 1'					
4						1'-2': Sawdust and wood chips, damp	. Refusal in hard				
5						woody debris.					
6											
7											
8											
9											
10											
11											
13											
14											
15											
16											
17											
18											
19											
20											
21											
22											
23											
24											
25											

	Anderson *				В	OREHOLE LITHOLOGIC LO	G			
	GEOLOG			BORING #FI	LL-1	PROJECT # 1420.01	SHEET 1 OF 1			
Geologi	Name: Sadr st: E. Ander Method: Ha	son		lamook, OR		Start/End Date: 1/22/14 Borehole Depth: 1' Borehole diameter: 3"				
DEPTH (ft.)	WELL DETAILS	SMPL INTVL	PID	SAMPLE #		SOIL DESCRIPTION				
1			0	FILL1-1						
2						· 0'-1': Med. brown soft clayey silty FIL	, Ell I. down with			
3					abundant fine roots. Refusal at 1		ense roots			
4										
5										
6										
7										
8										
9										
10										
11										
13										
14										
15										
16										
17										
18										
19										
20										
21										
22										
23										
24										
25										

	A ANDERSON ** GEOLOGICAL				В	OREHOLE LITHOLOGIC LO	G			
			В	ORING #FII	LL-1	PROJECT # 1420.01	SHEET 1 OF 1			
Geologi	Name: Sadr st: E. Ander Method: Ha	son		nook, OR		Start/End Date: 1/22/14 Borehole Depth: 1.5' Borehole diameter: 3"				
DEPTH (ft.)	WELL DETAILS	SMPL INTVL	PID	SAMPLE #		SOIL DESCRIPTION				
1			0	0 FILL2-1						
2						0'-1.5': Med. brown soft clayey silty Fl	LL, damp with			
4						abundant fine roots. Refusal at 1.5' in	uense roots			
5										
6										
7										
8										
9										
10										
11										
12										
13										
14										
15										
16										
17										
18										
19										
20										
21										
22										
23										
24										
25										

A	ANDERG	10N 42			В	OREHOLE LITHOLOGIC LO	G			
			E	BORING #EF	P-1	PROJECT # 1420.01	SHEET 1 OF 1			
Geologi	Name: Sadr st: E. Ander Method: Ha	son		mook, OR		Start/End Date: 1/21/14 Borehole Depth: 1' Borehole diameter: 3"				
DEPTH (ft.)	WELL DETAILS	SMPL INTVL	PID	SAMPLE #		SOIL DESCRIPTION				
1				EP1-1						
2						0'-1': Med-dark gray loose silty mud v	w/ fine roots and			
3						organics, wet.	.,,			
4										
5										
7										
8										
9										
10										
11										
12										
13										
15										
16										
17										
18										
19										
20										
21										
22										
23										
25										
20										

A	ANDERG	10N 48			В	OREHOLE LITHOLOGIC LO	G				
	ANDERS			BORING #EF	P-1	PROJECT # 1420.01	SHEET 1 OF 1				
Geologi	Name: Sadr ist: E. Ander Method: Ha	son		amook, OR		Start/End Date: 1/21/14 Borehole Depth: 1' Borehole diameter: 3"					
DEPTH (ft.)	WELL DETAILS	SMPL INTVL	PID	SAMPLE #		SOIL DESCRIPTION					
1				EP2-1							
2						0'-1': Med-dark gray loose clayey silt	v mud w/ fine				
3						roots and organics, cohesive, wet.	,				
4											
5											
7											
8											
9											
10											
11											
12											
13											
15											
16											
17											
18											
19											
20											
21											
23											
24											
25											

A	ANDERS	ON 48			В	OREHOLE LITHOLOGIC LO	OREHOLE LITHOLOGIC LOG					
			В	ORING #EI	P-3	PROJECT # 1420.01	SHEET 1 OF 1					
Geologi	Name: Sadr st: E. Ander Method: Ha	son		nook, OR		Start/End Date: 1/21/14 Borehole Depth: 1' Borehole diameter: 3"						
DEPTH (ft.)	WELL DETAILS	SMPL INTVL	PID	SAMPLE #		SOIL DESCRIPTION						
1				EP3-1								
2						0'-1': Med-dark brown loose silty mud	l w/ fine roots					
3						and organics.						
4												
5												
7												
8												
9												
10												
11												
12												
13												
15												
16												
17												
18												
19												
20												
21												
22												
23												
25												

A	ANDERS	ON &			ВС	REHOLE LITHOLOGIC LO	G
	GEOLOG		E	BORING #IP-	-1	PROJECT # 1420.01	SHEET 1 OF 1
Geologi	Name: Sadr st: E. Ander Method: Ha	son		mook, OR		Start/End Date: 1/22/14 Borehole Depth: 1' Borehole diameter: 3"	
DEPTH (ft.)	WELL DETAILS	SMPL INTVL	PID	SAMPLE #		SOIL DESCRIPTION	
1				IP1-1			
2						0'-1': Dark gray loose silty mud w/ find	e roots and
3						sticks.	
4							
5							
7							
8							
9							
10							
11							
12							
13							
15							
16							
17							
18							
19							
20							
21							
22							
24							
25							

Geologist	ANDERS GEOLOG ame: Sadri : E. Anders ethod: Hai	Property		ORING #IP-	-2	PROJECT # 1420.01	SHEET 1 OF 1			
Geologist	: E. Anders ethod: Hai	son	y, Tillan							
	WELL			nook, OR		Start/End Date: 1/22/14 Borehole Depth: 1' Borehole diameter: 3"				
DEPTH (ft.)	DETAILS	SMPL INTVL	PID	SAMPLE #						
1				IP2-1						
2						0'-1': Dark gray loose silty mud w/ fin	o roots and			
3						sticks.	e roots and			
4										
5										
6										
7										
8										
9										
10										
12										
13										
14										
15										
16										
17										
18										
19										
20										
21										
22										
23										
25										

N PHASE II ENVIRONMENTAL SITE ASSESSMEN	SADRI PROPERTY, TILLAMOOK, OREGON
APPENDIX	
Laboratory Report and Sample Chain of Custod	
Project #1420.01	Anderson Geological, Inc.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Monday, February 10, 2014

Erik Anderson Anderson Geological PO Box 649 Wilsonville, OR 97070

RE: Sadri Property / 1420.01

Enclosed are the results of analyses for work order <u>A4A0483</u>, which was received by the laboratory on 1/22/2014 at 2:45:00PM.

Thank you for using Apex Labs. We appreciate your business and strive to provide the highest quality services to the environmental industry.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: dthomas@apex-labs.com, or by phone at 503-718-2323.

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anderson Geological Project: Sadri Property

PO Box 649 Project Number: 1420.01 Reported:
Wilsonville, OR 97070 Project Manager: Erik Anderson 02/10/14 10:53

ANALYTICAL REPORT FOR SAMPLES

SAMPLE INFORMATION Laboratory ID Sample ID Matrix **Date Sampled Date Received** Soil 01/22/14 14:45 WMI-2 A4A0483-01 01/21/14 10:38 WM2-1 A4A0483-02 Soil 01/21/14 11:20 01/22/14 14:45 WM3-1 A4A0483-03 Soil 01/21/14 11:45 01/22/14 14:45 EP1-1 A4A0483-04 Soil 01/21/14 13:06 01/22/14 14:45 **EP2-1** A4A0483-05 Soil 01/21/14 13:20 01/22/14 14:45 **EP3-1** A4A0483-06 Soil 01/21/14 13:46 01/22/14 14:45 A4A0483-07 EM1-2 Soil 01/21/14 14:38 01/22/14 14:45 EM2-3 A4A0483-08 Soil 01/21/14 14:56 01/22/14 14:45 EM3-2 A4A0483-09 Soil 01/21/14 15:10 01/22/14 14:45 IP1-1 A4A0483-10 Soil 01/22/14 09:42 01/22/14 14:45 IP2-1 A4A0483-11 Soil 01/22/14 09:56 01/22/14 14:45 A4A0483-12 EM4-1 Soil 01/22/14 11:00 01/22/14 14:45 A4A0483-13 Soil 01/22/14 11:14 EM5-1 01/22/14 14:45 FILL1-1 A4A0483-14 Soil 01/22/14 11:44 01/22/14 14:45 Soil FILL2-1 A4A0483-15 01/22/14 11:58 01/22/14 14:45 WM1-W A4A0483-16 Water 01/21/14 12:20 01/22/14 14:45 EM2-W A4A0483-17 Water 01/21/14 15:40 01/22/14 14:45

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anderson Geological Project: Sadri Property

PO Box 649 Project Number: 1420.01 Reported:
Wilsonville, OR 97070 Project Manager: Erik Anderson 02/10/14 10:53

ANALYTICAL SAMPLE RESULTS

	H	ydrocarbo	n Identifica	tion Screen by	NWTPH-H	CID		
			Reporting	<u> </u>				
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
FILL1-1 (A4A0483-14)			Matrix: So	il Ba	atch: 40105	16		
Gasoline Range Organics	ND		64.2	mg/kg dry	1	01/24/14 22:24	NWTPH-HCID	
Diesel Range Organics	ND		161	"	"	"	"	
Oil Range Organics	ND		321	"	"	"	"	
Surrogate: o-Terphenyl (Surr)		Rec	overy: 100 %	Limits: 50-150 %	"	"	"	
4-Bromofluorobenzene (Surr)			95 %	Limits: 50-150 %	"	"	"	
FILL2-1 (A4A0483-15)			Matrix: So	il Ba	atch: 40105	16		
Gasoline Range Organics	ND		55.5	mg/kg dry	1	01/24/14 22:47	NWTPH-HCID	
Diesel Range Organics	ND		139	"	"	"	"	
Oil Range Organics	ND		278	"	"	"	"	
Surrogate: o-Terphenyl (Surr)		Re	ecovery: 93 %	Limits: 50-150 %	"	"	"	
4-Bromofluorobenzene (Surr)			87 %	Limits: 50-150 %	"	"	"	

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anderson Geological Project: Sadri Property

PO Box 649 Project Number: 1420.01 Reported:
Wilsonville, OR 97070 Project Manager: Erik Anderson 02/10/14 10:53

ANALYTICAL SAMPLE RESULTS

		Diesel	and Oil Hydr	ocarbons by	NWTPH-Dx			
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
EP1-1 (A4A0483-04)			Matrix: Soi	l l	Batch: 40105	89		
Diesel	ND		90.3	mg/kg dry	1	01/28/14 20:06	NWTPH-Dx	
Oil	ND		181	"	"	"	"	
Surrogate: o-Terphenyl (Surr)		Re	ecovery: 105 %	Limits: 50-150 %	ó "	"	"	
EP2-1 (A4A0483-05)			Matrix: Soi	I I	Batch: 40105	89		
Diesel	ND		61.2	mg/kg dry	1	01/28/14 20:24	NWTPH-Dx	
Oil	ND		122	"	"	"	"	
Surrogate: o-Terphenyl (Surr)		Re	covery: 102 %	Limits: 50-150 %	ć "	"	"	
EP3-1 (A4A0483-06)			Matrix: Soi	<u> </u>	Batch: 40105	89		
Diesel	ND		93.8	mg/kg dry	1	01/28/14 20:42	NWTPH-Dx	
Oil	ND		188	"	"	"	"	
Surrogate: o-Terphenyl (Surr)		Re	covery: 102 %	Limits: 50-150 %	ó "	"	"	
IP1-1 (A4A0483-10)			Matrix: Soi	i !	Batch: 40105	89		
Diesel	ND		85.5	mg/kg dry	1	01/28/14 21:18	NWTPH-Dx	
Oil	595		171	"	"	"	"	F-03
Surrogate: o-Terphenyl (Surr)		Re	covery: 103 %	Limits: 50-150 %	ó "	"	"	
IP2-1 (A4A0483-11)			Matrix: Soi	I !	Batch: 40105	89		
Diesel	ND		105	mg/kg dry	1	01/28/14 21:54	NWTPH-Dx	
Oil	374		211	"	ıı	"	"	F-03
Surrogate: o-Terphenyl (Surr)		Re	covery: 100 %	Limits: 50-150 %	ó "	"	"	
WM1-W (A4A0483-16)			Matrix: Wat	ter I	Batch: 40105	86		
Diesel	ND		196	ug/L	1	01/29/14 00:27	NWTPH-Dx	
Oil	500		392	"	"	"	"	
Surrogate: o-Terphenyl (Surr)		R	Recovery: 85 %	Limits: 50-150 %	ć "	"	"	
EM2-W (A4A0483-17)			Matrix: Wat	ter I	Batch: 40105	86		
Diesel	ND		189	ug/L	1	01/29/14 00:50	NWTPH-Dx	
Oil	ND		377	"	ıı	"	"	
Surrogate: o-Terphenyl (Surr)		R	Recovery: 83 %	Limits: 50-150 %	<u> </u>	"	"	

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anderson Geological Project: Sadri Property

PO Box 649 Project Number: 1420.01 Reported:
Wilsonville, OR 97070 Project Manager: Erik Anderson 02/10/14 10:53

ANALYTICAL SAMPLE RESULTS

	Diesei ali	и Оп пу	drocarbons by	/ NWTPH-Dx w	th Silica C	ei Cleanup		
	D. I.) (D)	Reporting				26.4	N Y .
Analyte	Result	MDL		Units	Dilution	Date Analyzed	Method	Notes
WMI-2 (A4A0483-01)			Matrix: Soi		tch: 40105			
Diesel	ND		45.4	mg/kg dry	1	01/28/14 20:56	NWTPH-Dx/SG	
Oil	330		90.7	"	"	"	"	
Surrogate: o-Terphenyl (Surr)			Recovery: 95 %	Limits: 50-150 %	"	"	"	
WM2-1 (A4A0483-02)			Matrix: Soi	l Ba	tch: 40105	81		
Diesel	ND		67.8	mg/kg dry	1	01/28/14 21:14	NWTPH-Dx/SG	
Oil	1290		136	"	"	"	"	
Surrogate: o-Terphenyl (Surr)			Recovery: 94 %	Limits: 50-150 %	"	"	"	
WM3-1 (A4A0483-03)			Matrix: Soi	l Ba	tch: 40105	81		
Diesel	ND		956	mg/kg dry	20	01/28/14 21:32	NWTPH-Dx/SG	
Oil	2680		1910	"	"	"	"	F-0
Surrogate: o-Terphenyl (Surr)			Recovery: %	Limits: 50-150 %	"	"	"	S-01
EM1-2 (A4A0483-07RE1)			Matrix: Soi	l Ba	tch: 40105	81		
Diesel	ND		207	mg/kg dry	5	01/29/14 11:13	NWTPH-Dx/SG	
Oil	721		414	"	"	"	"	F-0
Surrogate: o-Terphenyl (Surr)			Recovery: 98 %	Limits: 50-150 %	"	"	"	S-05
EM2-3 (A4A0483-08)			Matrix: Soi	l Ba	tch: 40105	81		
Diesel	ND		41.1	mg/kg dry	1	01/28/14 22:24	NWTPH-Dx/SG	
Oil	ND		82.1	"	"	"	"	
Surrogate: o-Terphenyl (Surr)			Recovery: 92 %	Limits: 50-150 %	"	"	"	
EM3-2 (A4A0483-09)			Matrix: Soi	l Ba	tch: 40105	81		
Diesel	ND		68.1	mg/kg dry	1	01/28/14 22:42	NWTPH-Dx/SG	
Oil	ND		136	"	"	"	"	
Surrogate: o-Terphenyl (Surr)			Recovery: 94 %	Limits: 50-150 %	"	"	"	
EM4-1 (A4A0483-12)			Matrix: Soi	I Ba	tch: 40105	81		
Diesel	ND		42.8	mg/kg dry	1	01/28/14 22:59	NWTPH-Dx/SG	
Oil	326		85.5	"	"	"	"	F-0
Surrogate: o-Terphenyl (Surr)			Recovery: 89 %	Limits: 50-150 %	"	"	"	
EM5-1 (A4A0483-13)			Matrix: Soi	l Ba	tch: 40105	81		
Diesel	ND		41.3	mg/kg dry	1	01/28/14 23:16	NWTPH-Dx/SG	
Oil	140		82.6	"	"	"	"	F-0

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anderson Geological Project: Sadri Property

 PO Box 649
 Project Number: 1420.01
 Reported:

 Wilsonville, OR 97070
 Project Manager: Erik Anderson
 02/10/14 10:53

ANALYTICAL SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260B Reporting Analyte Result MDL Limit Dilution Date Analyzed Method Notes Units WM3-1 (A4A0483-03) Batch: 4010643 Matrix: Soil V-16 50 01/30/14 14:48 Acetone ND 2.89 mg/kg dry 5035/8260B ND 0.0361 Benzene Bromobenzene ND 0.0722 ---Bromochloromethane ND 0.144 Bromodichloromethane ND 0.144 Bromoform ND 0.144 Bromomethane ND 1.44 2-Butanone (MEK) ND 1.44 n-Butylbenzene ND 0.144 sec-Butylbenzene ND 0.144 tert-Butylbenzene ND 0.144 Carbon tetrachloride ND 0.0722 Chlorobenzene ND 0.0722 ---Chloroethane ND 1.44 Chloroform ND 0.144 Chloromethane ND 0.7222-Chlorotoluene ND 0.144 4-Chlorotoluene ND 0.144 1,2-Dibromo-3-chloropropane ND 0.722 Dibromochloromethane ND 0.289 1,2-Dibromoethane (EDB) ND ---0.0722 Dibromomethane ND 0.144 0.0722 1,2-Dichlorobenzene ND 1,3-Dichlorobenzene ND 0.0722 1,4-Dichlorobenzene ND 0.0722 Dichlorodifluoromethane ND 0.289 ND 0.0722 1,1-Dichloroethane 1,2-Dichloroethane (EDC) 0.0722 ND 1,1-Dichloroethene ND 0.0722 cis-1,2-Dichloroethene ND 0.0722trans-1,2-Dichloroethene ND 0.0722 1,2-Dichloropropane ND 0.0722 0.0722 1,3-Dichloropropane ND 2,2-Dichloropropane ND 0.1441,1-Dichloropropene ND 0.144

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anderson Geological Project: Sadri Property

 PO Box 649
 Project Number:
 1420.01
 Reported:

 Wilsonville, OR 97070
 Project Manager:
 Erik Anderson
 02/10/14 10:53

ANALYTICAL SAMPLE RESULTS

		volatile	Organic Coi	mpounds by El	PA 8260B			
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
WM3-1 (A4A0483-03)			Matrix: Soil		atch: 401064			V-
cis-1,3-Dichloropropene	ND		0.144	mg/kg dry	50	"	5035/8260B	
trans-1,3-Dichloropropene	ND		0.144	"	"	"	"	
Ethylbenzene	ND		0.0722	"	"	"	"	
Hexachlorobutadiene	ND		0.289	"	"	"	"	
2-Hexanone	ND		1.44	"	"	"	"	
Isopropylbenzene	ND		0.144	"	"	"	"	
4-Isopropyltoluene	ND		0.144	"	"	"	"	
4-Methyl-2-pentanone (MiBK)	ND		1.44	"	"	"	"	
Methyl tert-butyl ether (MTBE)	ND		0.144	"	"	"	"	
Methylene chloride	ND		0.722	"	"	"	"	
Naphthalene	ND		0.289	"	"	"	"	
n-Propylbenzene	ND		0.0722	"	"	"	"	
Styrene	ND		0.144	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND		0.0722	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND		0.0722	"	"	"	"	
Tetrachloroethene (PCE)	ND		0.0722	"	"	"	"	
Toluene	ND		0.144	"	"	"	"	
1,2,3-Trichlorobenzene	ND		0.722	"	"	"	"	
1,2,4-Trichlorobenzene	ND		0.722	"	"	"	"	
1,1,1-Trichloroethane	ND		0.0722	"	"	"	"	
1,1,2-Trichloroethane	ND		0.0722	"	"	"	"	
Trichloroethene (TCE)	ND		0.0722	"	"	"	"	
Trichlorofluoromethane	ND		0.289	"	"	"	"	
1,2,3-Trichloropropane	ND		0.144	"	"	"	"	
1,2,4-Trimethylbenzene	ND		0.144	"	"	"	"	
1,3,5-Trimethylbenzene	ND		0.144	"	"	"	"	
Vinyl chloride	ND		0.0722	"	"	"	"	
m,p-Xylene	ND		0.144	"	"	"	"	
o-Xylene	ND		0.0722	"	"	"	"	
Surrogate: Dibromofluoromethane (Surr)		Rec	covery: 109 %	Limits: 70-130 %	1	"	"	
1,4-Difluorobenzene (Surr)			102 %	Limits: 70-130 %	"	"	"	
Toluene-d8 (Surr)			94 %	Limits: 70-130 %	"	"	"	
4-Bromofluorobenzene (Surr)			103 %	Limits: 70-130 %	"	"	"	

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anderson Geological Project: Sadri Property

 PO Box 649
 Project Number:
 1420.01
 Reported:

 Wilsonville, OR 97070
 Project Manager:
 Erik Anderson
 02/10/14 10:53

ANALYTICAL SAMPLE RESULTS

		Volatile	Organic Com	pounds by E	PA 8260B			
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
EM1-2 (A4A0483-07)			Matrix: Soil		atch: 40106			V-1
Acetone	ND		2.55	mg/kg dry	50	01/30/14 15:13	5035/8260B	
Benzene	ND		0.0319	"	"	"	"	
Bromobenzene	ND		0.0638	"	"	"	"	
Bromochloromethane	ND		0.128	"	"	"	"	
Bromodichloromethane	ND		0.128	"	"	"	"	
Bromoform	ND		0.128	"	"	"	"	
Bromomethane	ND		1.28	"	"	"	"	
2-Butanone (MEK)	ND		1.28	"	"	"	"	
n-Butylbenzene	ND		0.128	"	"	"	"	
sec-Butylbenzene	ND		0.128	"	"	"	"	
tert-Butylbenzene	ND		0.128	"	"	"	"	
Carbon tetrachloride	ND		0.0638	"	"	"	"	
Chlorobenzene	ND		0.0638	"	"	"	n	
Chloroethane	ND		1.28	"	"	"	"	
Chloroform	ND		0.128	"	"	"	"	
Chloromethane	ND		0.638	"	"	"	"	
2-Chlorotoluene	ND		0.128	"	"	"	"	
4-Chlorotoluene	ND		0.128	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND		0.638	"	"	"	"	
Dibromochloromethane	ND		0.255	"	"	"	"	
1,2-Dibromoethane (EDB)	ND		0.0638	"	"	"	"	
Dibromomethane	ND		0.128	"	"	"	"	
1,2-Dichlorobenzene	ND		0.0638	"	"	"	"	
1,3-Dichlorobenzene	ND		0.0638	"	"	"	"	
1,4-Dichlorobenzene	ND		0.0638	"	"	"	"	
Dichlorodifluoromethane	ND		0.255	"	"	"	"	
1,1-Dichloroethane	ND		0.0638	"	"	"	"	
1,2-Dichloroethane (EDC)	ND		0.0638	"	"	"	"	
1,1-Dichloroethene	ND		0.0638	"	"	"	n .	
cis-1,2-Dichloroethene	ND		0.0638	"	"	"	n .	
trans-1,2-Dichloroethene	ND		0.0638	"	"	"	n .	
1,2-Dichloropropane	ND		0.0638	"	"	"	n .	
1,3-Dichloropropane	ND		0.0638	"	"	"	"	
2,2-Dichloropropane	ND		0.128	"	"	"	"	
1,1-Dichloropropene	ND		0.128	"	"	"	"	

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anderson Geological Project: Sadri Property

PO Box 649 Project Number: 1420.01 Reported:
Wilsonville, OR 97070 Project Manager: Erik Anderson 02/10/14 10:53

ANALYTICAL SAMPLE RESULTS

		Volatile	Organic Cor	mpounds by E	PA 8260B			
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
EM1-2 (A4A0483-07)			Matrix: Soil	Ва	atch: 40106			V -1
cis-1,3-Dichloropropene	ND		0.128	mg/kg dry	50	"	5035/8260B	
trans-1,3-Dichloropropene	ND		0.128	"	"	"	"	
Ethylbenzene	ND		0.0638	"	"	"	"	
Hexachlorobutadiene	ND		0.255	"	"	"	"	
2-Hexanone	ND		1.28	"	"	"	"	
Isopropylbenzene	ND		0.128	"	"	"	"	
4-Isopropyltoluene	ND		0.128	"	"	"	"	
4-Methyl-2-pentanone (MiBK)	ND		1.28	"	"	"	"	
Methyl tert-butyl ether (MTBE)	ND		0.128	"	"	"	"	
Methylene chloride	ND		0.638	"	"	"	"	
Naphthalene	ND		0.255	"	"	"	"	
n-Propylbenzene	ND		0.0638	"	"	"	"	
Styrene	ND		0.128	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND		0.0638	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND		0.0638	"	"	"	"	
Tetrachloroethene (PCE)	ND		0.0638	"	"	"	"	
Toluene	ND		0.128	"	"	"	"	
1,2,3-Trichlorobenzene	ND		0.638	"	"	"	"	
1,2,4-Trichlorobenzene	ND		0.638	"	"	"	"	
1,1,1-Trichloroethane	ND		0.0638	"	"	"	"	
1,1,2-Trichloroethane	ND		0.0638	"	"	"	"	
Trichloroethene (TCE)	ND		0.0638	"	"	"	"	
Trichlorofluoromethane	ND		0.255	"	"	"	"	
1,2,3-Trichloropropane	ND		0.128	"	"	"	"	
1,2,4-Trimethylbenzene	ND		0.128	"	"	"	"	
1,3,5-Trimethylbenzene	ND		0.128	"	"	"	"	
Vinyl chloride	ND		0.0638	"	"	"	"	
m,p-Xylene	ND		0.128	"	"	"	"	
o-Xylene	ND		0.0638	"	"	"	"	
Surrogate: Dibromofluoromethane (Si	urr)	Rec	covery: 109 %	Limits: 70-130 %	1	"	"	
1,4-Difluorobenzene (Surr))		102 %	Limits: 70-130 %	"	"	"	
Toluene-d8 (Surr)			98 %	Limits: 70-130 %	"	"	"	
4-Bromofluorobenzene (Su	rr)		106 %	Limits: 70-130 %	"	"	"	

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anderson Geological Project: Sadri Property

 PO Box 649
 Project Number: 1420.01
 Reported:

 Wilsonville, OR 97070
 Project Manager: Erik Anderson
 02/10/14 10:53

ANALYTICAL SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260B Reporting Analyte Result MDL Limit Dilution Date Analyzed Method Notes Units Batch: 4010643 EM4-1 (A4A0483-12) Matrix: Soil V-16 50 Acetone ND 2.85 mg/kg dry 01/30/14 15:37 5035/8260B ND 0.0356 Benzene Bromobenzene ND 0.0713 ---Bromochloromethane ND 0.143 Bromodichloromethane ND 0.143 Bromoform ND 0.143 Bromomethane ND 1.43 2-Butanone (MEK) ND 1.43 n-Butylbenzene ND 0.143 sec-Butylbenzene ND 0.143 tert-Butylbenzene ND 0.143 Carbon tetrachloride ND 0.0713 Chlorobenzene ND 0.0713 ---Chloroethane ND 1.43 Chloroform ND 0.143 Chloromethane ND 0.713 2-Chlorotoluene ND 0.143 4-Chlorotoluene ND 0.143 1,2-Dibromo-3-chloropropane ND 0.713 Dibromochloromethane ND 0.285 1,2-Dibromoethane (EDB) ND ---0.0713 Dibromomethane ND 0.143 0.0713 1,2-Dichlorobenzene ND 1,3-Dichlorobenzene ND 0.0713 1,4-Dichlorobenzene ND 0.0713 Dichlorodifluoromethane ND 0.285 ND 1,1-Dichloroethane 0.0713 1,2-Dichloroethane (EDC) 0.0713 ND 1,1-Dichloroethene ND 0.0713 cis-1,2-Dichloroethene ND 0.0713trans-1,2-Dichloroethene ND 0.0713 1,2-Dichloropropane ND 0.0713 1,3-Dichloropropane ND 0.07132,2-Dichloropropane ND 0.143 1,1-Dichloropropene ND 0.143

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anderson Geological Project: Sadri Property

 PO Box 649
 Project Number: 1420.01
 Reported:

 Wilsonville, OR 97070
 Project Manager: Erik Anderson
 02/10/14 10:53

ANALYTICAL SAMPLE RESULTS

		Volatile	Organic Cor	mpounds by E	PA 8260B			
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
EM4-1 (A4A0483-12)			Matrix: Soil	В	atch: 40106			V-16
cis-1,3-Dichloropropene	ND		0.143	mg/kg dry	50	"	5035/8260B	
trans-1,3-Dichloropropene	ND		0.143	"	"	"	"	
Ethylbenzene	ND		0.0713	"	"	"	"	
Hexachlorobutadiene	ND		0.285	"	"	"	"	
2-Hexanone	ND		1.43	"	"	"	"	
Isopropylbenzene	ND		0.143	"	"	"	"	
4-Isopropyltoluene	ND		0.143	"	"	"	"	
4-Methyl-2-pentanone (MiBK)	ND		1.43	"	"	"	"	
Methyl tert-butyl ether (MTBE)	ND		0.143	"	"	"	"	
Methylene chloride	ND		0.713	"	"	"	"	
Naphthalene	ND		0.285	"	"	"	"	
n-Propylbenzene	ND		0.0713	"	"	"	"	
Styrene	ND		0.143	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND		0.0713	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND		0.0713	"	"	"	"	
Tetrachloroethene (PCE)	ND		0.0713	"	"	"	"	
Toluene	ND		0.143	"	"	"	"	
1,2,3-Trichlorobenzene	ND		0.713	"	"	"	"	
1,2,4-Trichlorobenzene	ND		0.713	"	"	"	"	
1,1,1-Trichloroethane	ND		0.0713	"	"	"	"	
1,1,2-Trichloroethane	ND		0.0713	"	"	"	"	
Trichloroethene (TCE)	ND		0.0713	"	"	"	"	
Trichlorofluoromethane	ND		0.285	"	"	"	"	
1,2,3-Trichloropropane	ND		0.143	"	"	"	"	
1,2,4-Trimethylbenzene	ND		0.143	"	"	"	"	
1,3,5-Trimethylbenzene	ND		0.143	"	"	"	"	
Vinyl chloride	ND		0.0713	"	"	"	"	
m,p-Xylene	ND		0.143	"	"	"	"	
o-Xylene	ND		0.0713	"	ıı.	"	"	
Surrogate: Dibromofluoromethane (Su	rr)	Re	ecovery: 108 %	Limits: 70-130 %	1	"	"	
1,4-Difluorobenzene (Surr)			100 %	Limits: 70-130 %	"	"	"	
Toluene-d8 (Surr)			99 %	Limits: 70-130 %	"	"	"	
4-Bromofluorobenzene (Sur	r)		103 %	Limits: 70-130 %	"	"	"	

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anderson Geological Project: Sadri Property

 PO Box 649
 Project Number: 1420.01
 Reported:

 Wilsonville, OR 97070
 Project Manager: Erik Anderson
 02/10/14 10:53

ANALYTICAL SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260B											
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Date Analyzed	Method	Notes			
VM1-W (A4A0483-16RE1)			Matrix: Water		Batch: 40104	59					
Acetone	ND		20.0	ug/L	1	01/22/14 22:04	EPA 8260B				
Benzene	ND		0.250	"	"	"	"				
Bromobenzene	ND		0.500	"	"	"	"				
Bromochloromethane	ND		1.00	"	"	"	"				
Bromodichloromethane	ND		1.00	"	"	"	"				
Bromoform	ND		1.00	"	"	"	"				
Bromomethane	ND		5.00	"	"	"	"				
2-Butanone (MEK)	ND		10.0	"	"	"	"				
n-Butylbenzene	ND		1.00	"	"	"	"				
sec-Butylbenzene	ND		1.00	"	"	"	"				
tert-Butylbenzene	ND		1.00	"	"	"	"				
Carbon tetrachloride	ND		0.500	"	"	"	"				
Chlorobenzene	ND		0.500	"	"	"	"				
Chloroethane	ND		5.00	"	"	"	"				
Chloroform	ND		1.00	"	"	"	"				
Chloromethane	ND		5.00	"	"	"	"				
2-Chlorotoluene	ND		1.00	"	"	"	"				
4-Chlorotoluene	ND		1.00	"	"	"	"				
1,2-Dibromo-3-chloropropane	ND		5.00	"	"	"	"				
Dibromochloromethane	ND		1.00	"	"	"	"				
1,2-Dibromoethane (EDB)	ND		0.500	"	"	"	"				
Dibromomethane	ND		1.00	"	"	"	"				
1,2-Dichlorobenzene	ND		0.500	"	"	"	"				
1,3-Dichlorobenzene	ND		0.500	"	"	"	"				
1,4-Dichlorobenzene	ND		0.500	"	"	"	"				
Dichlorodifluoromethane	ND		1.00	"	"	"	"				
1,1-Dichloroethane	ND		0.500	"	"	"	"				
1,2-Dichloroethane (EDC)	ND		0.500	"	"	"	"				
1,1-Dichloroethene	ND		0.500	"	"	"	"				
cis-1,2-Dichloroethene	ND		0.500	"	"	"	"				
trans-1,2-Dichloroethene	ND		0.500	"	"	"	"				
1,2-Dichloropropane	ND		0.500	"	"	"	"				
1,3-Dichloropropane	ND		1.00	"	"	"	"				
2,2-Dichloropropane	ND		1.00	"	"	"	"				
1,1-Dichloropropene	ND		1.00	"	"	"	"				

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anderson Geological Project: Sadri Property

PO Box 649 Project Number: 1420.01 Reported:
Wilsonville, OR 97070 Project Manager: Erik Anderson 02/10/14 10:53

ANALYTICAL SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260B											
			Reporting								
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes			
VM1-W (A4A0483-16RE1)			Matrix: Wate	er Ba	atch: 40104	59					
cis-1,3-Dichloropropene	ND		1.00	ug/L	1	"	EPA 8260B				
trans-1,3-Dichloropropene	ND		1.00	"	"	"	"				
Ethylbenzene	ND		0.500	"	"	"	"				
Hexachlorobutadiene	ND		5.00	"	"	"	"				
2-Hexanone	ND		10.0	"	"	"	"				
Isopropylbenzene	ND		1.00	"	"	"	"				
4-Isopropyltoluene	ND		1.00	"	"	"	"				
4-Methyl-2-pentanone (MiBK)	ND		10.0	"	"	"	"				
Methyl tert-butyl ether (MTBE)	ND		1.00	"	"	"	"				
Methylene chloride	ND		5.00	"	"	"	"				
Naphthalene	ND		2.00	"	"	"	"				
n-Propylbenzene	ND		0.500	"	"	"	"				
Styrene	ND		1.00	"	"	"	"				
1,1,1,2-Tetrachloroethane	ND		0.500	"	"	"	"				
1,1,2,2-Tetrachloroethane	ND		0.500	"	"	"	"				
Tetrachloroethene (PCE)	ND		0.500	"	"	"	"				
Toluene	ND		1.00	"	"	"	"				
1,2,3-Trichlorobenzene	ND		2.00	"	"	"	"				
1,2,4-Trichlorobenzene	ND		2.00	"	"	"	"				
1,1,1-Trichloroethane	ND		0.500	"	"	"	"				
1,1,2-Trichloroethane	ND		0.500	"	"	"	"				
Trichloroethene (TCE)	ND		0.500	"	"	"	"				
Trichlorofluoromethane	ND		2.00	"	"	"	"				
1,2,3-Trichloropropane	ND		1.00	"	"	"	"				
1,2,4-Trimethylbenzene	ND		1.00	"	"	"	"				
1,3,5-Trimethylbenzene	ND		1.00	"	"	"	"				
Vinyl chloride	ND		0.500	"	"	"	"				
m,p-Xylene	ND		1.00	"	"	"	"				
o-Xylene	ND		0.500	"	"	"	"				
Surrogate: Dibromofluoromethane (Su	err)	Red	covery: 112 %	Limits: 80-120 %	"	"	"				
1,4-Difluorobenzene (Surr)			101 %	Limits: 80-120 %	"	"	"				
Toluene-d8 (Surr)			112 %	Limits: 80-120 %	"	"	"				
4-Bromofluorobenzene (Sur	rr)		105 %	Limits: 80-120 %	"	"	"				

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anderson Geological Project: Sadri Property

 PO Box 649
 Project Number:
 1420.01
 Reported:

 Wilsonville, OR 97070
 Project Manager:
 Erik Anderson
 02/10/14 10:53

ANALYTICAL SAMPLE RESULTS

			Dti					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Date Analyzed	Method	Notes
EM2-W (A4A0483-17RE1)			Matrix: Water	Oillts	Batch: 40104	<u>-</u>		1.0.0
Acetone	ND		20.0	ug/L	1	01/22/14 22:28	EPA 8260B	
Benzene	ND		0.250	ug/L	"	"	"	
Bromobenzene	ND		0.500	"	"	"	"	
Bromochloromethane	ND		1.00	,,	"	"	"	
Bromodichloromethane	ND		1.00	,,	"	"	"	
Bromoform	ND		1.00	,,	"	"	"	
Bromomethane	ND		5.00	"	"	"	"	
2-Butanone (MEK)	ND		10.0	"	"	"	"	
n-Butylbenzene	ND		1.00	,,	"	"	"	
sec-Butylbenzene	ND		1.00	"	,,	"	"	
tert-Butylbenzene	ND		1.00	"	,,	"	"	
Carbon tetrachloride	ND		0.500	"	,,	"	"	
Chlorobenzene	ND		0.500	"	,,	"	"	
Chloroethane	ND		5.00	,,	"	"	"	
Chloroform	ND		1.00	,,	"	"	"	
Chloromethane	ND		5.00	"	"	"	"	
2-Chlorotoluene	ND		1.00	"	"	"	"	
4-Chlorotoluene	ND		1.00	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND		5.00	,,	"	"	"	
Dibromochloromethane	ND		1.00	"	"	"	"	
1,2-Dibromoethane (EDB)	ND		0.500	"	"	"	"	
Dibromomethane	ND		1.00	"	"	"	"	
1,2-Dichlorobenzene	ND		0.500	"	"	"	"	
1,3-Dichlorobenzene	ND		0.500	"	,,	"	"	
1,4-Dichlorobenzene	ND		0.500	"	"	"	"	
Dichlorodifluoromethane	ND		1.00	"	"	"	"	
1,1-Dichloroethane	ND		0.500	"	"	"	"	
1,2-Dichloroethane (EDC)	ND		0.500	"	"	"	"	
1,1-Dichloroethene	ND		0.500	"	"	"	"	
cis-1,2-Dichloroethene	ND		0.500	"	"	"	"	
trans-1,2-Dichloroethene	ND		0.500	"	"	"	"	
1,2-Dichloropropane	ND		0.500	"	"	"	"	
1,3-Dichloropropane	ND		1.00	"	"	"	"	
2,2-Dichloropropane	ND		1.00	"	"	"	"	
1,1-Dichloropropene	ND		1.00	"	"	"	"	

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anderson Geological Project: Sadri Property

PO Box 649 Project Number: 1420.01 Reported:
Wilsonville, OR 97070 Project Manager: Erik Anderson 02/10/14 10:53

ANALYTICAL SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260B											
) (D)	Reporting								
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes			
EM2-W (A4A0483-17RE1)			Matrix: Wate	er	Batch: 40104						
cis-1,3-Dichloropropene	ND		1.00	ug/L	1	"	EPA 8260B				
trans-1,3-Dichloropropene	ND		1.00	"	"	"	"				
Ethylbenzene	ND		0.500	"	"	"	"				
Hexachlorobutadiene	ND		5.00	"	"	"	"				
2-Hexanone	ND		10.0	"	"	"	"				
Isopropylbenzene	ND		1.00	"	"	"	"				
4-Isopropyltoluene	ND		1.00	"	"	"	"				
4-Methyl-2-pentanone (MiBK)	ND		10.0	"	"	"	"				
Methyl tert-butyl ether (MTBE)	ND		1.00	"	"	"	"				
Methylene chloride	ND		5.00	"	"	"	"				
Naphthalene	ND		2.00	"	"	"	"				
n-Propylbenzene	ND		0.500	"	"	"	"				
Styrene	ND		1.00	"	"	"	"				
1,1,1,2-Tetrachloroethane	ND		0.500	"	"	"	"				
1,1,2,2-Tetrachloroethane	ND		0.500	"	"	"	"				
Tetrachloroethene (PCE)	ND		0.500	"	"	"	"				
Toluene	ND		1.00	"	"	"	"				
1,2,3-Trichlorobenzene	ND		2.00	"	"	"	"				
1,2,4-Trichlorobenzene	ND		2.00	"	"	"	"				
1,1,1-Trichloroethane	ND		0.500	"	"	"	"				
1,1,2-Trichloroethane	ND		0.500	"	"	"	"				
Trichloroethene (TCE)	ND		0.500	"	"	"	"				
Trichlorofluoromethane	ND		2.00	"	"	"	"				
1,2,3-Trichloropropane	ND		1.00	"	"	"	"				
1,2,4-Trimethylbenzene	ND		1.00	"	"	"	"				
1,3,5-Trimethylbenzene	ND		1.00	"	"	"	"				
Vinyl chloride	ND		0.500	"	"	"	"				
m,p-Xylene	ND		1.00	"	"	"	"				
o-Xylene	ND		0.500	"	"	"	"				
Surrogate: Dibromofluoromethane (Su	urr)	Re	ecovery: 113 %	Limits: 80-120 %	6 "	"	"				
1,4-Difluorobenzene (Surr)	ı		102 %	Limits: 80-120 %	6 "	"	"				
Toluene-d8 (Surr)			112 %	Limits: 80-120 %	6 "	"	"				
4-Bromofluorobenzene (Sur	rr)		104 %	Limits: 80-120 %	6 "	"	"				

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anderson Geological Project: Sadri Property

 PO Box 649
 Project Number:
 1420.01
 Reported:

 Wilsonville, OR 97070
 Project Manager:
 Erik Anderson
 02/10/14 10:53

ANALYTICAL SAMPLE RESULTS

		Polyc	hlorinated Bi	phenyls by E	PA 8082A			
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
WM3-1 (A4A0483-03)			Matrix: Soil	E	Batch: 40200	003		C-07
Aroclor 1016	ND		0.0201	mg/kg dry	1	02/03/14 15:45	EPA 8082A	
Aroclor 1221	ND		0.0201	"	"	"	"	
Aroclor 1232	ND		0.0201	"	"	"	"	
Aroclor 1242	ND		0.0201	"	"	"	"	
Aroclor 1248	ND		0.0201	"	"	"	"	
Aroclor 1254	ND		0.0201	"	"	"	"	
Aroclor 1260	ND		0.0201	"	"	"	"	
Surrogate: Decachlorobiphenyl (Surr)		I	Recovery: 62 %	Limits: 60-125 %	"	"	"	
EP1-1 (A4A0483-04RE1)			Matrix: Soil	E	Batch: 40105	576		C-07
Aroclor 1016	ND		0.0365	mg/kg dry	1	01/29/14 10:24	EPA 8082A	
Aroclor 1221	ND		0.0365	"	"	"	"	
Aroclor 1232	ND		0.0365	"	"	"	"	
Aroclor 1242	ND		0.0365	"	"	"	"	
Aroclor 1248	ND		0.0365	"	"	"	"	
Aroclor 1254	ND		0.0365	"	"	"	"	
Aroclor 1260	ND		0.0365	"	"	"	"	
Surrogate: Decachlorobiphenyl (Surr)		F	Recovery: 83 %	Limits: 60-125 %	"	"	"	
EP2-1 (A4A0483-05)			Matrix: Soil	E	Batch: 40105	576		C-07
Aroclor 1016	ND		0.0293	mg/kg dry	1	01/29/14 09:29	EPA 8082A	
Aroclor 1221	ND		0.0293	"	"	"	"	
Aroclor 1232	ND		0.0293	"	"	"	"	
Aroclor 1242	ND		0.0293	"	"	"	"	
Aroclor 1248	ND		0.0293	"	"	"	"	
Aroclor 1254	ND		0.0293	"	"	"	"	
Aroclor 1260	ND		0.0293	"	"	"	"	
Surrogate: Decachlorobiphenyl (Surr)		I	Recovery: 78 %	Limits: 60-125 %	"	"	"	
EP3-1 (A4A0483-06)			Matrix: Soil	E	Batch: 40105	576		C-07
Aroclor 1016	ND		0.0367	mg/kg dry	1	01/29/14 09:47	EPA 8082A	
Aroclor 1221	ND		0.0367	"	"	"	"	
Aroclor 1232	ND		0.0367	"	"	"	"	
Aroclor 1242	ND		0.0367	"	"	"	"	
Aroclor 1248	ND		0.0367	"	"	"	"	
Aroclor 1254	ND		0.0367	"	"	"	"	
Aroclor 1260	ND		0.0367	"	"	"	"	

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anderson Geological Project: Sadri Property

 PO Box 649
 Project Number:
 1420.01
 Reported:

 Wilsonville, OR 97070
 Project Manager:
 Erik Anderson
 02/10/14 10:53

ANALYTICAL SAMPLE RESULTS

		Polyc	hlorinated Bi	phenyls by EP	A 8082A			
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Date Analyzed	Method	Notes
EP3-1 (A4A0483-06)			Matrix: Soil	Ba	atch: 40105	76		C-07
Surrogate: Decachlorobiphenyl (Surr)		R	Recovery: 79 %	Limits: 60-125 %	1	"	EPA 8082A	
EM1-2 (A4A0483-07RE1)			Matrix: Soil	Ва	atch: 40200	35		C-07
Aroclor 1016	ND		0.0193	mg/kg dry	1	02/04/14 11:41	EPA 8082A	
Aroclor 1221	ND		0.0193	"	"	"	"	
Aroclor 1232	ND		0.0193	"	"	"	"	
Aroclor 1242	ND		0.0193	"	"	"	"	
Aroclor 1248	ND		0.0193	"	"	"	"	
Aroclor 1254	ND		0.0193	"	"	"	"	
Aroclor 1260	ND		0.0193	"	"	"	"	
Surrogate: Decachlorobiphenyl (Surr)		R	Recovery: 72 %	Limits: 60-125 %	"	"	"	
IP1-1 (A4A0483-10)			Matrix: Soil	Ва	atch: 40105	76		C-07
Aroclor 1016	ND		0.0290	mg/kg dry	1	01/29/14 10:06	EPA 8082A	
Aroclor 1221	ND		0.0290	"	"	"	"	
Aroclor 1232	ND		0.0290	"	"	"	"	
Aroclor 1242	ND		0.0290	"	"	"	"	
Aroclor 1248	ND		0.0290	"	"	"	"	
Aroclor 1254	ND		0.0290	"	"	"	"	
Aroclor 1260	ND		0.0290	"	"	"	"	
Surrogate: Decachlorobiphenyl (Surr)		R	Recovery: 78 %	Limits: 60-125 %	"	"	"	
IP2-1 (A4A0483-11)			Matrix: Soil	Ва	atch: 40105	76		C-07
Aroclor 1016	ND		0.0341	mg/kg dry	1	01/29/14 10:06	EPA 8082A	
Aroclor 1221	ND		0.0341	"	"	"	"	
Aroclor 1232	ND		0.0341	"	"	"	"	
Aroclor 1242	ND		0.0341	"	"	"	"	
Aroclor 1248	ND		0.0341	"	"	"	"	
Aroclor 1254	ND		0.0341	"	"	"	"	
Aroclor 1260	ND		0.0341	"	"	"	"	
Surrogate: Decachlorobiphenyl (Surr)		R	Recovery: 99 %	Limits: 60-125 %	"	"	"	
EM4-1 (A4A0483-12RE1)			Matrix: Soil	Ва	atch: 40200	35		C-07
Aroclor 1016	ND		0.0190	mg/kg dry	1	02/04/14 11:59	EPA 8082A	
Aroclor 1221	ND		0.0190	"	"	"	"	
Aroclor 1232	ND		0.0190	"	"	"	"	
Aroclor 1242	ND		0.0190	"	"	"	"	

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anderson Geological Project: Sadri Property

 PO Box 649
 Project Number:
 1420.01
 Reported:

 Wilsonville, OR 97070
 Project Manager:
 Erik Anderson
 02/10/14 10:53

ANALYTICAL SAMPLE RESULTS

Polychlorinated Biphenyls by EPA 8082A												
			Reporting									
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes				
EM4-1 (A4A0483-12RE1)		Matrix: Soil Batch: 4020035										
Aroclor 1248	ND		0.0190	mg/kg dry	1	11	EPA 8082A					
Aroclor 1254	ND		0.0190	"	"	"	"					
Aroclor 1260	0.111		0.0190	"	"	"	"					
Surrogate: Decachlorobiphenyl (Surr)		Re	ecovery: 54 %	Limits: 60-125 %	"	"	"	S-03				
FILL1-1 (A4A0483-14)			Matrix: So	il Ba	atch: 40105	76		C-0				
Aroclor 1016	ND		0.0279	mg/kg dry	1	01/29/14 10:24	EPA 8082A					
Aroclor 1221	ND		0.0279	"	"	"	"					
Aroclor 1232	ND		0.0279	"	"	"	"					
Aroclor 1242	ND		0.0279	"	"	"	"					
Aroclor 1248	ND		0.0279	"	"	"	"					
Aroclor 1254	ND		0.0279	"	"	"	"					
Aroclor 1260	ND		0.0279	"	"	"	"					
Surrogate: Decachlorobiphenyl (Surr)		Re	ecovery: 89 %	Limits: 60-125 %	"	n .	"					
FILL2-1 (A4A0483-15)			Matrix: So	il Ba	atch: 40105	C-0						
Aroclor 1016	ND		0.0231	mg/kg dry	1	01/29/14 09:35	EPA 8082A					
Aroclor 1221	ND		0.0231	n .	"	"	"					
Aroclor 1232	ND		0.0231	n .	"	"	"					
Aroclor 1242	ND		0.0231	n .	"	"	"					
Aroclor 1248	ND		0.0231	"	"	"	"					
Aroclor 1254	ND		0.0231	"	"	"	"					
Aroclor 1260	ND		0.0231	"	"	"	"					
Surrogate: Decachlorobiphenyl (Surr)		Re	ecovery: 83 %	Limits: 60-125 %	"	"	"					

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anderson Geological Project: Sadri Property

 PO Box 649
 Project Number: 1420.01
 Reported:

 Wilsonville, OR 97070
 Project Manager: Erik Anderson
 02/10/14 10:53

ANALYTICAL SAMPLE RESULTS

		yai Oiliali	- nyurocarbo	ons (PAHs) by E	_FA 02/UL			
	D 1:) mr	Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
NM3-1 (A4A0483-03)			Matrix: Soil	Ва	tch: 40106			Q-
Acenaphthene	ND		0.100	mg/kg dry	5	01/30/14 16:29	EPA 8270D (SIM)	
Acenaphthylene	0.547		0.100	"	"	"	"	
Anthracene	0.242		0.100	"	"	"	"	
Benz(a)anthracene	0.763		0.100	"	"	"	"	
Benzo(a)pyrene	1.23		0.100	"	"	"	"	
Benzo(b+k) fluoranthene(s)	2.74		0.200	"	"	"	"	Q-26
Benzo(g,h,i)perylene	0.930		0.100	"	"	"	"	
Chrysene	1.34		0.100	"	"	"	"	
Dibenz(a,h)anthracene	0.235		0.100	"	"	"	"	
Fluoranthene	1.92		0.100	"	"	"	"	
Fluorene	0.134		0.100	"	"	"	"	
Indeno(1,2,3-cd)pyrene	1.05		0.100	"	"	"	"	
Naphthalene	0.117		0.100	"	"	"	"	
Phenanthrene	1.62		0.100	"	"	"	"	
Pyrene	1.79		0.100	"	"	"	"	
Surrogate: 2-Fluorobiphenyl (Surr)		I	Recovery: 81 %	Limits: 45-120 %	"	"	"	
p-Terphenyl-d14 (Surr)			92 %	Limits: 30-120 %	"	"	"	
EM1-2 (A4A0483-07)			Matrix: Soil	Ва	tch: 40106	65		
Acenaphthene	ND		0.0955	mg/kg dry	5	01/30/14 17:21	EPA 8270D (SIM)	
Acenaphthylene	3.97		0.0955	"	"	"	"	
Anthracene	5.05		0.0955	"	"	"	"	
Benz(a)anthracene	29.2		0.0955	"	"	"	"	
Benzo(b+k)fluoranthene(s)	56.7		0.191	"	"	"	"	Q-26
Benzo(g,h,i)perylene	16.0		0.0955	"	"	"	"	
Chrysene	32.3		0.0955	"	"	"	"	
Dibenz(a,h)anthracene	5.26		0.0955	"	"	"	"	
Fluoranthene	36.8		0.0955	"	"	"	"	
Fluorene	0.580		0.0955	"	"	"	"	
Indeno(1,2,3-cd)pyrene	19.8		0.0955	"	"	"	"	
Naphthalene	3.31		0.0955	"	"	"	"	
Phenanthrene	5.59		0.0955	"	"	"	"	
Surrogate: 2-Fluorobiphenyl (Surr)		1	Recovery: 77 %	Limits: 45-120 %	"	"	"	
p-Terphenyl-d14 (Surr)			94 %	Limits: 30-120 %	"	"	"	
EM1-2 (A4A0483-07RE1)			Matrix: Soil	Ва	tch: 40106	65		
Benzo(a)pyrene	37.4		0.955	mg/kg dry	50	01/31/14 09:33	EPA 8270D (SIM)	

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anderson Geological Project: Sadri Property

 PO Box 649
 Project Number: 1420.01
 Reported:

 Wilsonville, OR 97070
 Project Manager: Erik Anderson
 02/10/14 10:53

ANALYTICAL SAMPLE RESULTS

	P01	yaromati	- Hydrocarbo	ns (PAHs) by	EPA 82/0L	O SIIVI		
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Date Analyzed	Method	Notes
EM1-2 (A4A0483-07RE1)			Matrix: Soil	Ва	atch: 40106	65		
Pyrene	45.3		0.955	mg/kg dry	50	"	EPA 8270D (SIM)	
IP1-1 (A4A0483-10)			Matrix: Soil	Ва	atch: 40106	65		
Acenaphthene	ND		0.0276	mg/kg dry	1	01/30/14 17:47	EPA 8270D (SIM)	
Acenaphthylene	ND		0.0276	"	"	"	"	
Anthracene	ND		0.0276	"	"	"	"	
Benz(a)anthracene	ND		0.0276	"	"	"	n .	
Benzo(a)pyrene	ND		0.0276	"	"	"	"	
Benzo(b+k)fluoranthene(s)	ND		0.0552	"	"	"	"	Q-26
Benzo(g,h,i)perylene	ND		0.0276	"	"	"	"	
Chrysene	ND		0.0276	"	"	"	"	
Dibenz(a,h)anthracene	ND		0.0276	"	"	"	"	
Fluoranthene	ND		0.0276	"	"	"	"	
Fluorene	ND		0.0276	"	"	"	"	
Indeno(1,2,3-cd)pyrene	ND		0.0276	"	"	"	"	
Naphthalene	ND		0.0276	"	"	"	"	
Phenanthrene	ND		0.0276	"	"	"	"	
Pyrene	ND		0.0276	"	"	"	"	
Surrogate: 2-Fluorobiphenyl (Surr)		1	Recovery: 72 %	Limits: 45-120 %	"	"	"	
p-Terphenyl-d14 (Surr)			74 %	Limits: 30-120 %	"	"	"	
EM4-1 (A4A0483-12)			Matrix: Soil	Ва	atch: 40106	65		
Acenaphthene	ND		0.0194	mg/kg dry	1	01/30/14 18:14	EPA 8270D (SIM)	
Acenaphthylene	0.0209		0.0194	"	"	"	"	
Anthracene	ND		0.0194	"	"	"	u .	
Benz(a)anthracene	ND		0.0194	"	"	"	n .	
Benzo(a)pyrene	ND		0.0194	"	"	"	· ·	
Benzo(b+k)fluoranthene(s)	ND		0.0387	"	"	"	"	Q-26
Benzo(g,h,i)perylene	ND		0.0194	"	"	"	· ·	
Chrysene	ND		0.0194	"	"	"	"	
Dibenz(a,h)anthracene	ND		0.0194	"	"	"	"	
Fluoranthene	ND		0.0194	"	"	"	"	
Fluorene	ND		0.0194	"	"	"	"	
Indeno(1,2,3-cd)pyrene	ND		0.0194	"	"	"	"	
Naphthalene	0.0200		0.0194	"	"	"	"	
Phenanthrene	ND		0.0194	"	"	"	"	
Pyrene	0.0195		0.0194	"	"	"	,,	

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anderson Geological Project: Sadri Property

PO Box 649 Project Number: 1420.01 Reported:
Wilsonville, OR 97070 Project Manager: Erik Anderson 02/10/14 10:53

ANALYTICAL SAMPLE RESULTS

	Pol	yaromat	ic Hydrocarb	ons (PAHs) b	y EPA 8270I	D SIM		
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Date Analyzed	Method	Notes
EM4-1 (A4A0483-12)			Matrix: So	il	Batch: 40106	65		
Surrogate: 2-Fluorobiphenyl (Surr)	·	·	Recovery: 86 %	Limits: 45-120	% 1	"	EPA 8270D (SIM)	
p-Terphenyl-d14 (Surr)			93 %	Limits: 30-120	% "	"	"	

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anderson Geological Project: Sadri Property

PO Box 649 Project Number: 1420.01 Reported:
Wilsonville, OR 97070 Project Manager: Erik Anderson 02/10/14 10:53

ANALYTICAL SAMPLE RESULTS

Total Metals by EPA 6020 (ICPMS)												
			Reporting									
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes				
WMI-2 (A4A0483-01)			Matrix: Soil									
Batch: 4010580												
Arsenic	5.26		2.20	mg/kg dry	10	01/28/14 16:29	EPA 6020A					
Barium	53.5		2.20	"	"	"	"					
Cadmium	0.638		0.440	"	"	"	"					
Chromium	52.0		2.20	"	"	"	"					
Lead	25.6		0.440	"	"	"	"					
Mercury	ND		0.176	"	"	"	"					
Selenium	ND		2.20	"	"	"	"					
Silver	ND		0.440	"	"	"	"					
WM2-1 (A4A0483-02)			Matrix: Soil									
Batch: 4010580												
Arsenic	3.90		3.14	mg/kg dry	10	01/28/14 16:32	EPA 6020A					
Barium	112		3.14	"	"	"	"					
Cadmium	0.692		0.629	"	"	"	"					
Chromium	34.5		3.14	"	"	"	"					
Lead	62.2		0.629	"	"	"	"					
Mercury	ND		0.252	"	"	"	"					
Selenium	ND		3.14	"	"	"	"					
Silver	ND		0.629	"	"	"	"					
NM3-1 (A4A0483-03)			Matrix: Soil									
Batch: 4010580												
Arsenic	3.48		2.30	mg/kg dry	10	01/28/14 16:35	EPA 6020A					
Barium	93.9		2.30	"	"	"	"					
Cadmium	0.599		0.461	"	"	"	"					
Chromium	30.1		2.30	"	"	"	"					
Lead	98.4		0.461	"	"	"	"					
Mercury	ND		0.184	"	"	"	"					
Selenium	ND		2.30	"	"	"	"					
Silver	ND		0.461	"	"	"	"					
EP1-1 (A4A0483-04)			Matrix: Soil									
Batch: 4010580												
Arsenic	ND		3.85	mg/kg dry	10	01/28/14 16:38	EPA 6020A					
Barium	69.3		3.85	"	"	"	"					
Cadmium	ND		0.771	"	"	"	"					
Chromium	41.9		3.85	"	"	"	"					

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anderson Geological Project: Sadri Property

 PO Box 649
 Project Number:
 1420.01
 Reported:

 Wilsonville, OR 97070
 Project Manager:
 Erik Anderson
 02/10/14 10:53

ANALYTICAL SAMPLE RESULTS

		То	tal Metals by	EPA 6020 (IC	PMS)			
Analyta	Result	MDL	Reporting	** .	Dil+i	Data Andread	Method	Notes
Analyte EP1-1 (A4A0483-04)	Kesuit	MIDL	Limit	Units	Dilution	Date Analyzed	Memod	Notes
	12.0		Matrix: Soil	д 1	10	"	FD4 5070 :	
Lead	12.8		0.771	mg/kg dry	10	"	EPA 6020A	
Mercury	ND		0.308	"	"		"	
Selenium	ND		3.85	"	"	"	"	
Silver	ND		0.771	"	"	"	,,	
EP2-1 (A4A0483-05)			Matrix: Soil					
Batch: 4010580								
Arsenic	4.97		3.21	mg/kg dry	10	01/28/14 16:53	EPA 6020A	
Barium	119		3.21	"	"	"	"	
Cadmium	0.770		0.642	"	"	"	"	
Chromium	51.6		3.21	"	"	"	"	
Lead	10.3		0.642	"	"	"	"	
Mercury	ND		0.257	"	"	"	"	
Selenium	ND		3.21	"	"	"	"	
Silver	ND		0.642	"	"	"	"	
EP3-1 (A4A0483-06)			Matrix: Soil					
Batch: 4010580								
Arsenic	4.69		3.85	mg/kg dry	10	01/28/14 16:56	EPA 6020A	
Barium	76.2		3.85	"	"	"	"	
Cadmium	ND		0.770	"	"	"	"	
Chromium	51.5		3.85	"	"	"	"	
Lead	13.5		0.770	"	"	"	"	
Mercury	ND		0.308	"	"	"	"	
Selenium	ND		3.85	"	"	"	"	
Silver	ND		0.770	"	"	"	"	
EM1-2 (A4A0483-07)			Matrix: Soil					
Batch: 4010580								
Arsenic	10.3		2.09	mg/kg dry	10	01/28/14 16:59	EPA 6020A	
Barium	1290		2.09	"	"	"	"	
Cadmium	5.12		0.418	"	"	"	"	
Chromium	41.2		2.09	"	"	"	"	
Lead	108		0.418	"	"	"	"	
Mercury	ND		0.167	"	"	"	"	
Selenium	ND		2.09	**	"	"	"	
Silver	1.04		0.418	"	"	"	"	
EM2-3 (A4A0483-08)			Matrix: Soil					

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anderson Geological Project: Sadri Property

PO Box 649 Project Number: 1420.01 Reported:
Wilsonville, OR 97070 Project Manager: Erik Anderson 02/10/14 10:53

ANALYTICAL SAMPLE RESULTS

		101	al Metals by E	FA 6020 (IC	rivio)			
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
EM2-3 (A4A0483-08)			Matrix: Soil					
Batch: 4010580								
Arsenic	5.57		1.96	mg/kg dry	10	01/28/14 17:02	EPA 6020A	
Barium	261		1.96	"	"	"	"	
Cadmium	0.606		0.391	"	"	"	"	
Chromium	53.2		1.96	"	"	"	"	
Lead	14.3		0.391	"	"	"	"	
Mercury	ND		0.156	"	"	"	"	
Selenium	ND		1.96	"	"	"	"	
Silver	ND		0.391	"	"	"	"	
EM3-2 (A4A0483-09)			Matrix: Soil					
Batch: 4010580								
Arsenic	5.98		3.42	mg/kg dry	10	01/28/14 17:05	EPA 6020A	
Barium	239		3.42	"	"	"	"	
Cadmium	ND		0.683	"	"	"	"	
Chromium	38.3		3.42	"	"	"	"	
Lead	39.0		0.683	"	"	"	"	
Mercury	ND		0.273	"	"	"	"	
Selenium	ND		3.42	"	"	"	"	
Silver	ND		0.683	"	"	"	"	
P1-1 (A4A0483-10)			Matrix: Soil					
Batch: 4010580								
Arsenic	3.19		3.19	mg/kg dry	10	01/28/14 17:07	EPA 6020A	
Barium	76.2		3.19	"	"	"	"	
Cadmium	ND		0.639	"	"	"	"	
Chromium	34.5		3.19	"	"	"	"	
Lead	12.9		0.639	"	"	"	"	
Mercury	ND		0.255	"	"	"	"	
Selenium	ND		3.19	"	"	"	"	
Silver	ND		0.639	"	"	"	"	
P2-1 (A4A0483-11)			Matrix: Soil					
Batch: 4010580								
Arsenic	4.43		3.28	mg/kg dry	10	01/28/14 17:10	EPA 6020A	
Barium	101		3.28	"	"	"	"	
Cadmium	ND		0.657	"	"	"	"	
Chromium	44.8		3.28	"	"	"	"	

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anderson Geological Project: Sadri Property

PO Box 649 Project Number: 1420.01 Reported:
Wilsonville, OR 97070 Project Manager: Erik Anderson 02/10/14 10:53

ANALYTICAL SAMPLE RESULTS

		Tot	tal Metals by	EPA 6020 (IC	PMS)			
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
IP2-1 (A4A0483-11)			Matrix: Soil					
Lead	17.7		0.657	mg/kg dry	10	"	EPA 6020A	
Mercury	ND		0.263	"	"	"	"	
Selenium	ND		3.28	"	"	"	"	
Silver	ND		0.657	"	"	"	"	
FILL1-1 (A4A0483-14)			Matrix: Soil					
Batch: 4010580								
Arsenic	ND		3.12	mg/kg dry	10	01/28/14 17:13	EPA 6020A	
Barium	67.6		3.12	"	"	"	"	
Cadmium	ND		0.624	"	"	"	"	
Chromium	29.4		3.12	"	"	"	"	
Lead	9.65		0.624	"	"	"	"	
Mercury	ND		0.250	"	"	"	"	
Selenium	ND		3.12	"	"	"	"	
Silver	ND		0.624	"	"	"	"	
FILL2-1 (A4A0483-15)			Matrix: Soil					
Batch: 4010580								
Arsenic	3.58		2.56	mg/kg dry	10	01/28/14 17:22	EPA 6020A	
Barium	78.2		2.56	"	"	"	"	
Cadmium	ND		0.512	"	"	"	"	
Chromium	40.4		2.56	"	"	"	"	
Lead	20.3		0.512	"	"	"	"	
Mercury	ND		- 0.205 "		"	"	" "	
Selenium	ND		2.56	"	"	"	"	
Silver	ND		0.512	"	"	"	"	

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anderson Geological Project: Sadri Property

PO Box 649 Project Number: 1420.01 Reported:
Wilsonville, OR 97070 Project Manager: Erik Anderson 02/10/14 10:53

ANALYTICAL SAMPLE RESULTS

Dissolved Metals by EPA 6020 (ICPMS)												
			Reporting									
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes				
WM1-W (A4A0483-16)			Matrix: Wate	r								
Batch: 4010602												
Arsenic	ND		1.00	ug/L	1	01/29/14 13:16	EPA 6020A (Diss)					
Barium	7.20		1.00	"	"	"	"					
Cadmium	ND		0.200	"	"	"	"					
Chromium	3.40		1.00	"	"	"	"					
Lead	0.933		0.200	"	"	"	"					
Mercury	ND		0.0800	"	"	"	"					
Selenium	ND		1.00	"	"	"	"					
Silver	ND		0.200	"	"	"	"					
EM2-W (A4A0483-17)			Matrix: Wate	r								
Batch: 4010602												
Arsenic	ND		1.00	ug/L	1	01/29/14 13:19	EPA 6020A (Diss)					
Barium	27.3		1.00	"	"	"	"					
Cadmium	ND		0.200	"	"	"	"					
Chromium	ND		1.00	"	"	"	"					
Lead	ND		0.200	"	"	"	"					
Mercury	ND		0.0800	"	"	"	"					
Selenium	ND		1.00	"	"	"	"					
Silver	ND		0.200	"	"	"	"					

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anderson Geological Project: Sadri Property

PO Box 649 Project Number: 1420.01 Reported:
Wilsonville, OR 97070 Project Manager: Erik Anderson 02/10/14 10:53

ANALYTICAL SAMPLE RESULTS

	Percent Dry Weight												
			Reporting										
Analyte	Result	MDL	Limit	Units	Dilution		Method	Note					
WMI-2 (A4A0483-01)			Matrix: Soil	Ва	tch: 40105	13							
% Solids	48.9		1.00	% by Weight	1	01/27/14 10:00	EPA 8000C						
WM2-1 (A4A0483-02)			Matrix: Soil	Ва	tch: 40105	13							
% Solids	31.8		1.00	% by Weight	1	01/27/14 10:00	EPA 8000C						
WM3-1 (A4A0483-03)			Matrix: Soil	Ва	tch: 40105	13							
% Solids	47.4		1.00	% by Weight	1	01/27/14 10:00	EPA 8000C						
EP1-1 (A4A0483-04)			Matrix: Soil	Ва	tch: 40105	13							
% Solids	25.8		1.00	% by Weight	1	01/27/14 10:00	EPA 8000C						
EP2-1 (A4A0483-05)			Matrix: Soil	Ва	tch: 40105	13							
% Solids	32.4		1.00	% by Weight	1	01/27/14 10:00	EPA 8000C						
EP3-1 (A4A0483-06)			Matrix: Soil	Ва	tch: 40105	13							
% Solids	26.2		1.00	% by Weight	1	01/27/14 10:00	EPA 8000C						
EM1-2 (A4A0483-07)			Matrix: Soil	Ва	tch: 40105	13							
% Solids	50.2		1.00	% by Weight	1	01/27/14 10:00	EPA 8000C						
EM2-3 (A4A0483-08)			Matrix: Soil	Ва	tch: 40105	13							
% Solids	52.4		1.00	% by Weight	1	01/27/14 10:00	EPA 8000C						
EM3-2 (A4A0483-09)			Matrix: Soil	Ва	tch: 40105	13							
% Solids	32.1		1.00	% by Weight	1	01/27/14 10:00	EPA 8000C						
IP1-1 (A4A0483-10)			Matrix: Soil	Ва	tch: 40105	13							
% Solids	33.6		1.00	% by Weight	1	01/27/14 10:00	EPA 8000C						
IP2-1 (A4A0483-11)			Matrix: Soil	Ва	tch: 40105	13							
% Solids	29.8		1.00	% by Weight	1	01/27/14 10:00	EPA 8000C						
EM4-1 (A4A0483-12)			Matrix: Soil	Ва	tch: 40105	13							
% Solids	48.6		1.00	% by Weight	1	01/27/14 10:00	EPA 8000C						
EM5-1 (A4A0483-13)			Matrix: Soil	Ва	tch: 40105	13							
% Solids	47.5		1.00	% by Weight	1	01/27/14 10:00	EPA 8000C						
FILL1-1 (A4A0483-14)			Matrix: Soil	Ва	tch: 40105	13							
% Solids	35.2		1.00	% by Weight	1	01/27/14 10:00	EPA 8000C						
FILL2-1 (A4A0483-15)			Matrix: Soil	Soil Batch: 4010513									
% Solids	40.9		1.00	% by Weight	1	01/27/14 10:00	EPA 8000C						

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anderson Geological Project: Sadri Property

PO Box 649 Project Number: 1420.01 Reported:
Wilsonville, OR 97070 Project Manager: Erik Anderson 02/10/14 10:53

QUALITY CONTROL (QC) SAMPLE RESULTS

	Hydrocarbon Identification Screen by NWTPH-HCID											
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 4010516 - NWTPH-H	CID (Soil)						Soi	I				
Blank (4010516-BLK1)				Prep	ared: 01/	24/14 14:56	Analyzed:	01/24/14 21	:37			
NWTPH-HCID												
Gasoline Range Organics	ND		18.2	mg/kg wet	1							
Diesel Range Organics	ND		45.5	"	"							
Oil Range Organics	ND		90.9	"	"							
Surr: o-Terphenyl (Surr)		Rec	covery: 97 %	Limits: 50-1	50 %	Dilu	tion: 1x					
4-Bromofluorobenzene (Surr)			97 %	50-1	50 %		"					
Duplicate (4010516-DUP1)				Prep	ared: 01/	24/14 14:56	Analyzed:	01/24/14 23	:11			
QC Source Sample: FILL2-1 (A4A0 NWTPH-HCID)483-15)											
Gasoline Range Organics	ND		57.0	mg/kg dry	1		ND				30%	
Diesel Range Organics	ND		142	"	"		ND				30%	
Oil Range Organics	ND		285	"	"		ND				30%	
Surr: o-Terphenyl (Surr)		Reco	overy: 101 %	Limits: 50-1	50 %	Dilu	tion: 1x					
4-Bromofluorobenzene (Surr)			96 %	50-1	50 %		"					

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anderson Geological Project: Sadri Property

PO Box 649 Project Number: 1420.01 Reported:
Wilsonville, OR 97070 Project Manager: Erik Anderson 02/10/14 10:53

QUALITY CONTROL (QC) SAMPLE RESULTS

			Diesel and	Oil Hydro	carbon	s by NWTF	H-Dx					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 4010586 - EPA 3510	OC (Acid Ex	traction)					Wat	er				
Blank (4010586-BLK3)				Pre	pared: 01/	28/14 13:45	Analyzed:	01/29/14 12	2:39			
NWTPH-Dx												
Diesel	ND		182	ug/L	2.5							
Oil	ND		364	"	"							
Surr: o-Terphenyl (Surr)		Rec	covery: 91 %	Limits: 50	-150 %	Dilı	tion: 2.5x					
LCS (4010586-BS2)				Pre	pared: 01/2	28/14 13:46	Analyzed:	01/28/14 22	2:54			
NWTPH-Dx												
Diesel	1080		200	ug/L	2.5	1250		86	58-115%			
Surr: o-Terphenyl (Surr)		Red	covery: 89 %	Limits: 50	-150 %	Dilı	ution: 2.5x					
LCS Dup (4010586-BSD2)				Pre	pared: 01/2	28/14 13:46	Analyzed:	01/28/14 23	3:17			Q-19
NWTPH-Dx												
Diesel	1090		200	ug/L	2.5	1250		87	58-115%	1	20%	
Surr: o-Terphenyl (Surr)		Rec	covery: 90 %	Limits: 50	-150 %	Dilı	tion: 2.5x					

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anderson Geological Project: Sadri Property

PO Box 649 Project Number: 1420.01 Reported:
Wilsonville, OR 97070 Project Manager: Erik Anderson 02/10/14 10:53

QUALITY CONTROL (QC) SAMPLE RESULTS

			Diesel and	l Oil Hydro	arbon	s by NWTP	H-Dx					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 4010589 - EPA 3546	(Fuels)						Soi	l				
Blank (4010589-BLK1)				Prepa	ared: 01/	28/14 14:50	Analyzed:	01/28/14 19	9:15			
NWTPH-Dx												
Diesel	ND		25.0	mg/kg wet	1							
Oil	ND		50.0	"	"							
Surr: o-Terphenyl (Surr)		Reco	very: 100 %	Limits: 50-1	50 %	Dilu	tion: 1x					
LCS (4010589-BS1)				Prepa	ared: 01/	28/14 14:50	Analyzed:	01/28/14 19	9:48			
NWTPH-Dx												
Diesel	125		25.0	mg/kg wet	1	125		100	76-115%			
Surr: o-Terphenyl (Surr)		Reco	very: 105 %	Limits: 50-1	50 %	Dilu	tion: 1x					
Duplicate (4010589-DUP1)				Prepa	ared: 01/	28/14 14:50	Analyzed:	01/28/14 22	2:30			
QC Source Sample: IP2-1 (A4A04	83-11)											
NWTPH-Dx												
Diesel	ND		107	mg/kg dry	1		ND				30%	
Oil	401		214	"	"		374			7	30%	F-03
Surr: o-Terphenyl (Surr)		Reco	very: 104 %	Limits: 50-1	50 %	Dilu	tion: 1x					

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anderson Geological Project: Sadri Property

 PO Box 649
 Project Number:
 1420.01
 Reported:

 Wilsonville, OR 97070
 Project Manager:
 Erik Anderson
 02/10/14 10:53

QUALITY CONTROL (QC) SAMPLE RESULTS

	Die	esel and	Oil Hydroc	arbons by	NWTPH	I-Dx with S	ilica Gel	Cleanup)			
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 4010581 - EPA 3546	(Fuels) w/	Silica Ge	el+Acid (NV	VTPH)			Soil	<u> </u>				
Blank (4010581-BLK1)				Prep	ared: 01/	28/14 12:16	Analyzed:	01/28/14 1	9:11			
NWTPH-Dx/SG												
Diesel	ND		25.0	mg/kg wet	1							
Oil	ND		50.0	"	"							
Surr: o-Terphenyl (Surr)		Re	covery: 96 %	Limits: 50-1	50 %	Dilu	ution: 1x					
LCS (4010581-BS1)				Prep	ared: 01/	28/14 12:16	Analyzed:	01/28/14 1	9:28			
NWTPH-Dx/SG												
Diesel	120		25.0	mg/kg wet	1	125		96	77-115%			
Surr: o-Terphenyl (Surr)		Re	covery: 98 %	Limits: 50-1	50 %	Dilu	ution: 1x					
Duplicate (4010581-DUP2)				Prep	ared: 01/	28/14 12:16	Analyzed:	01/28/14 2	3:34			
QC Source Sample: EM5-1 (A4A0)483-13)											
NWTPH-Dx/SG												
Diesel	ND		46.2	mg/kg dry	1		ND				30%	
Oil	180		92.4	"	"		140			25	30%	F-0
Surr: o-Terphenyl (Surr)		Re	covery: 94 %	Limits: 50-1	50 %	Dilu	ution: 1x					

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anderson Geological Project: Sadri Property

 PO Box 649
 Project Number:
 1420.01
 Reported:

 Wilsonville, OR 97070
 Project Manager:
 Erik Anderson
 02/10/14 10:53

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	<u> </u>								
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 4010459 - EPA 5030	ОВ						Wat	er				
Blank (4010459-BLK1)				Pre	pared: 01/2	22/14 12:00	Analyzed:	01/22/14 14	:40			
EPA 8260B												
Acetone	ND		20.0	ug/L	1							
Benzene	ND		0.250	"	"							
Bromobenzene	ND		0.500	"	"							
Bromochloromethane	ND		1.00	"	"							
Bromodichloromethane	ND		1.00	"	"							
Bromoform	ND		1.00	"	"							
Bromomethane	ND		5.00	"	"							
2-Butanone (MEK)	ND		10.0	"	"							
n-Butylbenzene	ND		1.00	"	"							
sec-Butylbenzene	ND		1.00	"	"							
tert-Butylbenzene	ND		1.00	"	"							
Carbon tetrachloride	ND		0.500	"	"							
Chlorobenzene	ND		0.500	"	"							
Chloroethane	ND		5.00	"	"							
Chloroform	ND		1.00	"	"							
Chloromethane	ND		5.00	"	"							
2-Chlorotoluene	ND		1.00	"	"							
4-Chlorotoluene	ND		1.00	"	"							
1,2-Dibromo-3-chloroprop	ND		5.00	"	"							
ane Dibromochloromethane	ND		1.00	"	"							
1,2-Dibromoethane (EDB)	ND		0.500	"	"							
Dibromomethane	ND		1.00	"	"							
1,2-Dichlorobenzene	ND		0.500	"	"							
1,3-Dichlorobenzene	ND		0.500	"	"							
1,4-Dichlorobenzene	ND		0.500	"	"							
Dichlorodifluoromethane	ND		1.00	"	"							
1,1-Dichloroethane	ND		0.500	"	"							
1,2-Dichloroethane (EDC)	ND		0.500	"	"							
1,1-Dichloroethene	ND		0.500	"	"							

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anderson Geological Project: Sadri Property

 PO Box 649
 Project Number:
 1420.01
 Reported:

 Wilsonville, OR 97070
 Project Manager:
 Erik Anderson
 02/10/14 10:53

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Con	npound	s by EPA 8	3260B					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 4010459 - EPA 5030B	1						Wat	er				
Blank (4010459-BLK1)				Pre	pared: 01/2	22/14 12:00	Analyzed:	01/22/14 14	:40			
cis-1,2-Dichloroethene	ND		0.500	ug/L	"							
trans-1,2-Dichloroethene	ND		0.500	"	"							
1,2-Dichloropropane	ND		0.500	"	"							
1,3-Dichloropropane	ND		1.00	"	"							
2,2-Dichloropropane	ND		1.00	"	"							
1,1-Dichloropropene	ND		1.00	"	"							
cis-1,3-Dichloropropene	ND		1.00	"	"							
trans-1,3-Dichloropropene	ND		1.00	"	"							
Ethylbenzene	ND		0.500	"	"							
Hexachlorobutadiene	ND		5.00	"	"							
2-Hexanone	ND		10.0	"	"							
Isopropylbenzene	ND		1.00	"	"							
4-Isopropyltoluene	ND		1.00	"	"							
4-Methyl-2-pentanone (MiBK)	ND		10.0	"	"							
Methyl tert-butyl ether (MTBE)	ND		1.00	"	"							
Methylene chloride	ND		5.00	"	"							
Naphthalene	ND		2.00	"	"							
n-Propylbenzene	ND		0.500	"	"							
Styrene	ND		1.00	"	"							
1,1,1,2-Tetrachloroethane	ND		0.500	"	"							
1,1,2,2-Tetrachloroethane	ND		0.500	"	"							
Tetrachloroethene (PCE)	ND		0.500	"	"							
Toluene	ND		1.00	"	"							
1,2,3-Trichlorobenzene	ND		2.00	"	"							
1,2,4-Trichlorobenzene	ND		2.00	"	"							
1,1,1-Trichloroethane	ND		0.500	"	"							
1,1,2-Trichloroethane	ND		0.500	"	"							
Trichloroethene (TCE)	ND		0.500	"	"							
Trichlorofluoromethane	ND		2.00	"	"							
1,2,3-Trichloropropane	ND		1.00	"	"							

Apex Laboratories

Daym I hum

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anderson Geological Project: Sadri Property

 PO Box 649
 Project Number: 1420.01
 Reported:

 Wilsonville, OR 97070
 Project Manager: Erik Anderson
 02/10/14 10:53

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	garne con	iipouilus	J Dy Li A C	,200					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 4010459 - EPA 5030E	3						Wat	er				
Blank (4010459-BLK1)				Pre	pared: 01/2	22/14 12:00	Analyzed:	01/22/14 14	4:40			
1,2,4-Trimethylbenzene	ND		1.00	"	"							
1,3,5-Trimethylbenzene	ND		1.00	"	"							
Vinyl chloride	ND		0.500	"	"							
m,p-Xylene	ND		1.00	"	"							
o-Xylene	ND		0.500	"	"							
Surr: Dibromofluoromethane (Surr)		Rec	overy: 114 %	Limits: 80	-120 %	Dili	ution: 1x					
1,4-Difluorobenzene (Surr)			102 %		-120 %		"					
Toluene-d8 (Surr)			113 %		-120 %		"					
4-Bromofluorobenzene (Surr)			104 %	80-	-120 %		"					
LCS (4010459-BS1)				Pre	pared: 01/2	22/14 12:00	Analyzed:	01/22/14 13	3:51			
EPA 8260B												
Acetone	35.5		20.0	ug/L	1	40.0		89	70-130%			
Benzene	16.7		0.250	"	"	20.0		84	"			
Bromobenzene	18.2		0.500	"	"	"		91	"			
Bromochloromethane	20.8		1.00	"	"	"		104	"			
Bromodichloromethane	19.4		1.00	"	"	"		97	"			
Bromoform	20.8		1.00	"	"	"		104	"			
Bromomethane	22.5		5.00	"	"	"		112	"			
2-Butanone (MEK)	41.5		10.0	"	"	40.0		104	"			
n-Butylbenzene	20.2		1.00	"	"	20.0		101	"			
sec-Butylbenzene	20.6		1.00	"	"	"		103	"			
tert-Butylbenzene	20.4		1.00	"	"	"		102	"			
Carbon tetrachloride	20.6		0.500	"	"	"		103	"			
Chlorobenzene	18.4		0.500	"	"	"		92	"			
Chloroethane	44.6		5.00	"	"	"		223	"			ES
Chloroform	16.5		1.00	"	"	"		82	"			
Chloromethane	17.5		5.00	"	"	"		88	"			
2-Chlorotoluene	18.9		1.00	"	"	"		95	"			
4-Chlorotoluene	19.9		1.00	"	"	"		100	"			
1,2-Dibromo-3-chloroprop	18.6		5.00	"	"	"		93	"			

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anderson Geological Project: Sadri Property

 PO Box 649
 Project Number:
 1420.01
 Reported:

 Wilsonville, OR 97070
 Project Manager:
 Erik Anderson
 02/10/14 10:53

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Con	npound	s by EPA 8	3260B					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 4010459 - EPA 503	0B						Wat	er				
LCS (4010459-BS1)				Prej	pared: 01/	22/14 12:00	Analyzed:	01/22/14 13	:51			
Dibromochloromethane	19.9		1.00	ug/L	"	"		99	"			
1,2-Dibromoethane (EDB)	20.0		0.500	"	"	"		100	"			
Dibromomethane	18.4		1.00	"	"	"		92	"			
1,2-Dichlorobenzene	18.7		0.500	"	"	"		93	"			
1,3-Dichlorobenzene	19.1		0.500	"	"	"		95	"			
1,4-Dichlorobenzene	18.5		0.500	"	"	"		93	"			
Dichlorodifluoromethane	15.8		1.00	"	"	"		79	"			
1,1-Dichloroethane	18.0		0.500	"	"	"		90	"			
1,2-Dichloroethane (EDC)	19.0		0.500	"	"	"		95	"			
1,1-Dichloroethene	18.8		0.500	"	"	"		94	"			
eis-1,2-Dichloroethene	18.0		0.500	"	"	"		90	"			
rans-1,2-Dichloroethene	18.5		0.500	"	"	"		93	"			
,2-Dichloropropane	18.4		0.500	"	"	"		92	"			
,3-Dichloropropane	19.3		1.00	"	"	"		97	"			
2,2-Dichloropropane	15.4		1.00	"	"	"		77	"			
1,1-Dichloropropene	17.8		1.00	"	"	"		89	"			
cis-1,3-Dichloropropene	18.9		1.00	"	"	"		95	"			
rans-1,3-Dichloropropene	18.9		1.00	"	"	"		94	"			
Ethylbenzene	18.9		0.500	"	"	"		94	"			
Hexachlorobutadiene	18.3		5.00	"	"	"		92	"			
2-Hexanone	43.0		10.0	"	"	40.0		108	"			
sopropylbenzene	19.3		1.00	"	"	20.0		96	"			
1-Isopropyltoluene	20.0		1.00	"	"	"		100	"			
l-Methyl-2-pentanone MiBK)	46.6		10.0	"	"	40.0		117	"			
Methyl tert-butyl ether MTBE)	18.5		1.00	"	"	20.0		92	"			
Methylene chloride	16.1		5.00	"	"	"		81	"			
Naphthalene	15.5		2.00	"	"	"		77	"			
-Propylbenzene	20.1		0.500	"	"	"		100	"			
Styrene	17.3		1.00	"	"	"		87	"			
,1,1,2-Tetrachloroethane	20.6		0.500	"	"	"		103	"			

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anderson Geological Project: Sadri Property

 PO Box 649
 Project Number:
 1420.01
 Reported:

 Wilsonville, OR 97070
 Project Manager:
 Erik Anderson
 02/10/14 10:53

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Co	mpound	s by EPA 8	260B					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 4010459 - EPA 5030E	3						Wat	er				
LCS (4010459-BS1)				Pr	epared: 01/	22/14 12:00	Analyzed:	01/22/14 13	:51			
1,1,2,2-Tetrachloroethane	21.0		0.500	"	"	"		105	"			
Tetrachloroethene (PCE)	18.5		0.500	"	"	"		93	"			
Toluene	18.4		1.00	"	"	"		92	"			
1,2,3-Trichlorobenzene	18.7		2.00	"	"	"		93	"			
1,2,4-Trichlorobenzene	17.6		2.00	"	"	"		88	"			
1,1,1-Trichloroethane	18.8		0.500	"	"	"		94	"			
1,1,2-Trichloroethane	20.1		0.500	"	"	"		101	"			
Trichloroethene (TCE)	17.1		0.500	"	"	"		86	"			
Trichlorofluoromethane	96.4		2.00	"	"	"		482	"			EST
1,2,3-Trichloropropane	20.2		1.00	"	"	"		101	"			
1,2,4-Trimethylbenzene	20.2		1.00	"	"	"		101	"			
1,3,5-Trimethylbenzene	20.2		1.00	"	"	"		101	"			
Vinyl chloride	18.8		0.500	"	"	"		94	"			
m,p-Xylene	39.2		1.00	"	"	40.0		98	"			
o-Xylene	18.7		0.500	"	"	20.0		94	"			
Surr: Dibromofluoromethane (Surr)		Rec	overy: 109 %	Limits: 8	0-120 %	Dilu	tion: 1x					
1,4-Difluorobenzene (Surr)			98 %	80	0-120 %		"					
Toluene-d8 (Surr)			110 %		0-120 %		"					
4-Bromofluorobenzene (Surr)			100 %	80	0-120 %		"					

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anderson Geological Project: Sadri Property

 PO Box 649
 Project Number:
 1420.01
 Reported:

 Wilsonville, OR 97070
 Project Manager:
 Erik Anderson
 02/10/14 10:53

QUALITY CONTROL (QC) SAMPLE RESULTS

			Voiatile Of	ganic Com	pounds	Dy EFA 0						
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 4010643 - EPA 5035A	ı						Soil					
Blank (4010643-BLK1)				Prepa	ared: 01/3	0/14 09:00	Analyzed:	01/30/14 11:	:33			
5035/8260B												
Acetone	ND		0.667	mg/kg wet	50							
Benzene	ND		0.00833	"	"							
Bromobenzene	ND		0.0167	"	"							
Bromochloromethane	ND		0.0333	"	"							
Bromodichloromethane	ND		0.0333	"	"							
Bromoform	ND		0.0333	"	"							
Bromomethane	ND		0.333	"	"							
2-Butanone (MEK)	ND		0.333	"	"							
n-Butylbenzene	ND		0.0333	"	"							
sec-Butylbenzene	ND		0.0333	"	"							
ert-Butylbenzene	ND		0.0333	"	"							
Carbon tetrachloride	ND		0.0167	"	"							
Chlorobenzene	ND		0.0167	"	"							
Chloroethane	ND		0.333	"	"							
Chloroform	ND		0.0333	"	"							
Chloromethane	ND		0.167	"	"							
2-Chlorotoluene	ND		0.0333	"	"							
4-Chlorotoluene	ND		0.0333	"	"							
1,2-Dibromo-3-chloroprop	ND		0.167	"	"							
ane			0.055									
Dibromochloromethane	ND		0.0667	"	"							
1,2-Dibromoethane (EDB)	ND		0.0167	"	"							
Dibromomethane	ND		0.0333	"	"							
1,2-Dichlorobenzene	ND		0.0167	"	"							
1,3-Dichlorobenzene	ND		0.0167	"	"							
,4-Dichlorobenzene	ND		0.0167	"	"							
Dichlorodifluoromethane	ND		0.0667	"	"							
1,1-Dichloroethane	ND		0.0167	"	"							
1,2-Dichloroethane (EDC)	ND		0.0167	"	"							
1,1-Dichloroethene	ND		0.0167	"	"							

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anderson Geological Project: Sadri Property

 PO Box 649
 Project Number:
 1420.01
 Reported:

 Wilsonville, OR 97070
 Project Manager:
 Erik Anderson
 02/10/14 10:53

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile O	ganic Com	pounds	by EPA 8	260B					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 4010643 - EPA 5035A							Soil					
Blank (4010643-BLK1)				Prepa	red: 01/3	30/14 09:00	Analyzed:	01/30/14 11	:33			
cis-1,2-Dichloroethene	ND		0.0167	mg/kg wet	"							
trans-1,2-Dichloroethene	ND		0.0167	"	"							
1,2-Dichloropropane	ND		0.0167	"	"							
1,3-Dichloropropane	ND		0.0167	"	"							
2,2-Dichloropropane	ND		0.0333	"	"							
1,1-Dichloropropene	ND		0.0333	"	"							
cis-1,3-Dichloropropene	ND		0.0333	"	"							
trans-1,3-Dichloropropene	ND		0.0333	"	"							
Ethylbenzene	ND		0.0167	"	"							
Hexachlorobutadiene	ND		0.0667	"	"							
2-Hexanone	ND		0.333	"	"							
Isopropylbenzene	ND		0.0333	"	"							
4-Isopropyltoluene	ND		0.0333	"	"							
4-Methyl-2-pentanone	ND		0.333	"	"							
(MiBK) Methyl tert-butyl ether (MTBE)	ND		0.0333	"	"							
Methylene chloride	ND		0.167	"	"							
Naphthalene	ND		0.0667	"	"							
n-Propylbenzene	ND		0.0167	"	"							
Styrene	ND		0.0333	"	"							
1,1,1,2-Tetrachloroethane	ND		0.0167	"	"							
1,1,2,2-Tetrachloroethane	ND		0.0167	"	"							
Tetrachloroethene (PCE)	ND		0.0167	"	"							
Toluene	ND		0.0333	"	"							
1,2,3-Trichlorobenzene	ND		0.167	"	"							
1,2,4-Trichlorobenzene	ND		0.167	"	"							
1,1,1-Trichloroethane	ND		0.0167	"	"							
1,1,2-Trichloroethane	ND		0.0167	"	"							
Trichloroethene (TCE)	ND		0.0167	"	"							
Trichlorofluoromethane	ND		0.0667	"	"							
1,2,3-Trichloropropane	ND		0.0333	"	"							

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anderson Geological Project: Sadri Property

 PO Box 649
 Project Number:
 1420.01
 Reported:

 Wilsonville, OR 97070
 Project Manager:
 Erik Anderson
 02/10/14 10:53

QUALITY CONTROL (QC) SAMPLE RESULTS

Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 4010643 - EPA 5035 <i>i</i>	4						Soi	I				
Blank (4010643-BLK1)				Prepa	red: 01/.	30/14 09:00	Analyzed:	01/30/14 1	1:33			
1,2,4-Trimethylbenzene	ND		0.0333	"	"							
1,3,5-Trimethylbenzene	ND		0.0333	"	"							
Vinyl chloride	ND		0.0167	"	"							
m,p-Xylene	ND		0.0333	"	"							
o-Xylene	ND		0.0167	"	"							
Surr: Dibromofluoromethane (Surr)		Reco	overy: 106 %	Limits: 70-13	30 %	Dilu	tion: Ix					
1,4-Difluorobenzene (Surr)			101 %	70-13	80 %		"					
Toluene-d8 (Surr)			99 %	70-13	80 %		"					
4-Bromofluorobenzene (Surr)			104 %	70-13	80 %		"					
LCS (4010643-BS1)				Prepa	red: 01/3	30/14 09:00	Analyzed:	01/30/14 1	0:45			
5035/8260B												
Acetone	2.08		1.00	mg/kg wet	50	2.00		104	65-135%			Q-4
Benzene	0.996		0.0125	"	"	1.00		100	"			
Bromobenzene	0.944		0.0250	"	"	"		94	"			
Bromochloromethane	1.09		0.0500	"	"	"		109	"			
Bromodichloromethane	1.12		0.0500	"	"	"		112	"			
Bromoform	1.08		0.0500	"	"	"		108	"			
Bromomethane	0.983		0.500	"	"	"		98	"			
2-Butanone (MEK)	2.38		0.500	"	"	2.00		119	"			
n-Butylbenzene	0.952		0.0500	"	"	1.00		95	"			
sec-Butylbenzene	0.962		0.0500	"	"	"		96	"			
tert-Butylbenzene	0.986		0.0500	"	"	"		99	"			
Carbon tetrachloride	1.18		0.0250	"	"	"		118	"			
Chlorobenzene	0.953		0.0250	"	"	"		95	"			
Chloroethane	1.11		0.500	"	"	"		111	"			
Chloroform	1.00		0.0500	"	"	"		100	"			
Chloromethane	0.878		0.250	"	"	"		88	"			
2-Chlorotoluene	0.928		0.0500	"	"	"		93	"			
4-Chlorotoluene	0.962		0.0500	"	"	"		96	"			

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anderson Geological Project: Sadri Property

 PO Box 649
 Project Number: 1420.01
 Reported:

 Wilsonville, OR 97070
 Project Manager: Erik Anderson
 02/10/14 10:53

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Com	pounds	by EPA 8	3260B					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 4010643 - EPA 503	55A						Soil					
LCS (4010643-BS1)				Prepa	red: 01/3	30/14 09:00	Analyzed:	01/30/14 10	:45			
Dibromochloromethane	1.01		0.100	mg/kg wet	"	"		101	"			
1,2-Dibromoethane (EDB)	1.06		0.0250	"	"	"		106	"			
Dibromomethane	1.14		0.0500	"	"	"		114	"			
1,2-Dichlorobenzene	0.958		0.0250	"	"	"		96	"			
1,3-Dichlorobenzene	0.964		0.0250	"	"	"		96	"			
1,4-Dichlorobenzene	0.933		0.0250	"	"	"		93	"			
Dichlorodifluoromethane	0.855		0.100	"	"	"		86	"			
1,1-Dichloroethane	1.07		0.0250	"	"	"		107	"			
1,2-Dichloroethane (EDC)	1.16		0.0250	"	"	"		116	"			
1,1-Dichloroethene	1.09		0.0250	"	"	"		109	"			
cis-1,2-Dichloroethene	1.06		0.0250	"	"	"		106	"			
trans-1,2-Dichloroethene	1.07		0.0250	"	"	"		107	"			
1,2-Dichloropropane	1.06		0.0250	"	"	"		106	"			
1,3-Dichloropropane	0.989		0.0250	"	"	"		99	"			
2,2-Dichloropropane	1.18		0.0500	"	"	"		118	"			
1,1-Dichloropropene	1.04		0.0500	"	"	"		104	"			
cis-1,3-Dichloropropene	0.899		0.0500	"	"	"		90	"			
trans-1,3-Dichloropropene	0.963		0.0500	"	"	"		96	"			
Ethylbenzene	0.962		0.0250	"	"	"		96	"			
Hexachlorobutadiene	0.912		0.100	"	"	"		91	"			
2-Hexanone	2.09		0.500	"	"	2.00		104	"			
Isopropylbenzene	1.04		0.0500	"	"	1.00		104	"			
4-Isopropyltoluene	0.976		0.0500	"	"	"		98	"			
4-Methyl-2-pentanone (MiBK)	2.22		0.500	"	"	2.00		111	"			
Methyl tert-butyl ether (MTBE)	1.19		0.0500	"	"	1.00		119	"			
Methylene chloride	0.998		0.250	"	"	"		100	"			
Naphthalene	0.885		0.100	"	"	"		89	"			
n-Propylbenzene	0.917		0.0250	"	"	"		92	"			
Styrene	0.918		0.0500	"	"	"		92	"			
1,1,1,2-Tetrachloroethane	1.07		0.0250	"	"	"		107	"			

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anderson Geological Project: Sadri Property

 PO Box 649
 Project Number: 1420.01
 Reported:

 Wilsonville, OR 97070
 Project Manager: Erik Anderson
 02/10/14 10:53

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Co	mpound	s by EPA 8	260B					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 4010643 - EPA 5035	Α						Soil]				
LCS (4010643-BS1)				Pro	epared: 01/	30/14 09:00	Analyzed:	01/30/14 10	:45			
1,1,2,2-Tetrachloroethane	0.935		0.0250	"	"	"		94	"			
Tetrachloroethene (PCE)	0.976		0.0250	"	"	"		98	"			
Toluene	0.906		0.0500	"	"	"		91	"			
1,2,3-Trichlorobenzene	0.992		0.250	"	"	"		99	"			
1,2,4-Trichlorobenzene	0.970		0.250	"	"	"		97	"			
1,1,1-Trichloroethane	1.12		0.0250	"	"	"		112	"			
1,1,2-Trichloroethane	1.02		0.0250	"	"	"		102	"			
Trichloroethene (TCE)	1.08		0.0250	"	"	"		108	"			
Trichlorofluoromethane	1.30		0.100	"	"	"		130	"			
1,2,3-Trichloropropane	0.959		0.0500	"	"	"		96	"			
1,2,4-Trimethylbenzene	0.982		0.0500	"	"	"		98	"			
1,3,5-Trimethylbenzene	0.986		0.0500	"	"	"		99	"			
Vinyl chloride	0.965		0.0250	"	"	"		96	"			
m,p-Xylene	2.02		0.0500	"	"	2.00		101	"			
o-Xylene	1.02		0.0250	"	"	1.00		102	"			
Surr: Dibromofluoromethane (Surr)		Rec	covery: 108 %	Limits: 70	0-130 %	Dilu	tion: 1x					
1,4-Difluorobenzene (Surr)			101 %		0-130 %		"					
Toluene-d8 (Surr)			98 %		0-130 %		"					
4-Bromofluorobenzene (Surr)			102 %	70	0-130 %		"					

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anderson Geological Project: Sadri Property

PO Box 649 Project Number: 1420.01 Reported:
Wilsonville, OR 97070 Project Manager: Erik Anderson 02/10/14 10:53

QUALITY CONTROL (QC) SAMPLE RESULTS

			Polychlo	rinated Bipl	nenyls	by EPA 80)82A					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 4010576 - EPA 3546							Soi	I				
Blank (4010576-BLK1)				Prepa	red: 01/	28/14 10:02	Analyzed:	01/29/14 0	8:59			C-07
EPA 8082A												
Aroclor 1016	ND		0.00909	mg/kg wet	1							
Aroclor 1221	ND		0.00909	"	"							
Aroclor 1232	ND		0.00909	"	"							
Aroclor 1242	ND		0.00909	"	"							
Aroclor 1248	ND		0.00909	"	**							
Aroclor 1254	ND		0.00909	"	"							
Aroclor 1260	ND		0.00909	"	"							
Surr: Decachlorobiphenyl (Surr)		Re	ecovery: 90 %	Limits: 60-12	25 %	Dilı	ution: 1x					
LCS (4010576-BS1)				Prepa	red: 01/	28/14 10:02	Analyzed:	01/29/14 0	9:17			C-0
EPA 8082A												
Aroclor 1016	0.207		0.0100	mg/kg wet	1	0.250		83	40-140%			
Aroclor 1260	0.266		0.0100	"	"	"		106	60-130%			
Surr: Decachlorobiphenyl (Surr)		Re	ecovery: 97 %	Limits: 60-12	25 %	Dilı	ution: 1x					
Matrix Spike (4010576-MS1)				Prepa	red: 01/	28/14 10:02	Analyzed:	01/29/14 0	9:55			C-0
QC Source Sample: FILL2-1 (A4A	.0483-15)											
EPA 8082A												
Aroclor 1016	0.426		0.0240	mg/kg dry	1	0.601	ND	71	40-140%			
Aroclor 1260	0.479		0.0240	"	"	"	ND	80	60-130%			
Surr: Decachlorobiphenyl (Surr)		Re	ecovery: 84 %	Limits: 60-12	25 %	Dilı	ution: 1x					

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anderson Geological Project: Sadri Property

 PO Box 649
 Project Number:
 1420.01
 Reported:

 Wilsonville, OR 97070
 Project Manager:
 Erik Anderson
 02/10/14 10:53

QUALITY CONTROL (QC) SAMPLE RESULTS

			Polychlo	rinated Bip	henyls	by EPA 80)82A					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 4020003 - EPA 3546	5						Soi	I				
Blank (4020003-BLK1)				Prepa	ared: 02/	03/14 07:36	Analyzed:	02/03/14 15	5:08			C-(
EPA 8082A												
Aroclor 1016	ND		0.00833	mg/kg wet	1							
Aroclor 1221	ND		0.00833	"	"							
Aroclor 1232	ND		0.00833	"	"							
Aroclor 1242	ND		0.00833	"	"							
Aroclor 1248	ND		0.00833	"	"							
Aroclor 1254	ND		0.00833	"	"							
Aroclor 1260	ND		0.00833	"	"							
Surr: Decachlorobiphenyl (Surr)		Red	covery: 86 %	Limits: 60-1	25 %	Dilı	ution: Ix					
LCS (4020003-BS1)				Prepa	ared: 02/	03/14 07:36	Analyzed:	02/03/14 15	5:27			C-(
EPA 8082A												
Aroclor 1016	0.203		0.0100	mg/kg wet	1	0.250		81	40-140%			
Aroclor 1260	0.233		0.0100	"	"	"		93	60-130%			
Surr: Decachlorobiphenyl (Surr)		Red	covery: 91 %	Limits: 60-1	25 %	Dilt	ution: 1x					
Duplicate (4020003-DUP1)				Prepa	ared: 02/	03/14 07:36	Analyzed:	02/03/14 16	5:03			C-0
QC Source Sample: WM3-1 (A4A)	0483-03)											
EPA 8082A												
Aroclor 1016	ND		0.0181	mg/kg dry	1		ND				30%	
Aroclor 1221	ND		0.0181	"	"		ND				30%	
Aroclor 1232	ND		0.0181	"	"		ND				30%	
Aroclor 1242	ND		0.0181	"	"		ND				30%	
Aroclor 1248	ND		0.0181	"	"		ND				30%	
Aroclor 1254	ND		0.0181	"	"		ND				30%	
Aroclor 1260	ND		0.0181	"	"		ND				30%	
Surr: Decachlorobiphenyl (Surr)		Red	covery: 50 %	Limits: 60-1	25 %	Dilı	ution: 1x					S-00

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anderson Geological Project: Sadri Property

PO Box 649 Project Number: 1420.01 Reported:
Wilsonville, OR 97070 Project Manager: Erik Anderson 02/10/14 10:53

QUALITY CONTROL (QC) SAMPLE RESULTS

			Polychlo	rinated Bip	henyls	by EPA 80	82A					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 4020035 - EPA 3546							Soi	l				
Blank (4020035-BLK1)				Prep	ared: 02/	/04/14 07:07	Analyzed:	02/04/14 11	:05			C-07
EPA 8082A												
Aroclor 1016	ND		0.00833	mg/kg wet	1							
Aroclor 1221	ND		0.00833	"	"							
Aroclor 1232	ND		0.00833	"	"							
Aroclor 1242	ND		0.00833	"	"							
Aroclor 1248	ND		0.00833	"	"							
Aroclor 1254	ND		0.00833	"	"							
Aroclor 1260	ND		0.00833	"	"							
Surr: Decachlorobiphenyl (Surr)		Rec	covery: 78 %	Limits: 60-1	25 %	Dilu	tion: 1x					
LCS (4020035-BS1)				Prep	ared: 02/	/04/14 07:07	Analyzed:	02/04/14 11	:23			C-07
EPA 8082A												
Aroclor 1016	0.216		0.0100	mg/kg wet	1	0.250		86	40-140%			
Aroclor 1260	0.237		0.0100	"	"	"		95	60-130%			
Surr: Decachlorobiphenyl (Surr)		Rec	covery: 97 %	Limits: 60-1	25 %	Dilu	tion: Ix					

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anderson Geological Project: Sadri Property

 PO Box 649
 Project Number:
 1420.01
 Reported:

 Wilsonville, OR 97070
 Project Manager:
 Erik Anderson
 02/10/14 10:53

QUALITY CONTROL (QC) SAMPLE RESULTS

		Poly	aromatic Hy	/drocarbon	s (PAH	s) by EPA	8270D S	IM				
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 4010665 - EPA 3546	;						Soi	l				
Blank (4010665-BLK1)				Prepa	red: 01/	30/14 13:00	Analyzed:	01/30/14 1:	5:37			
EPA 8270D (SIM)												
Acenaphthene	ND		0.00769	mg/kg wet	1							
Acenaphthylene	ND		0.00769	"	"							
Anthracene	ND		0.00769	"	"							
Benz(a)anthracene	ND		0.00769	"	"							
Benzo(a)pyrene	ND		0.00769	"	"							
Benzo(b)fluoranthene	ND		0.00769	"	"							
Benzo(k)fluoranthene	ND		0.00769	"	"							
Benzo(b+k)fluoranthene(s)	ND		0.0154	"	"							
Benzo(g,h,i)perylene	ND		0.00769	"	"							
Chrysene	ND		0.00769	"	"							
Dibenz(a,h)anthracene	ND		0.00769	"	"							
Fluoranthene	ND		0.00769	"	"							
Fluorene	ND		0.00769	"	"							
Indeno(1,2,3-cd)pyrene	ND		0.00769	"	"							
Naphthalene	ND		0.00769	"	"							
Phenanthrene	ND		0.00769	"	"							
Pyrene	ND		0.00769	"	"							
Surr: 2-Fluorobiphenyl (Surr)		Re	covery: 93 %	Limits: 45-12	20 %	Dilı	ution: 1x					
p-Terphenyl-d14 (Surr)			103 %	30-12	20 %		"					
LCS (4010665-BS1)				Prepa	red: 01/.	30/14 13:00	Analyzed:	01/30/14 10	6:03			
EPA 8270D (SIM)												
Acenaphthene	0.790		0.0100	mg/kg wet	1	0.800		99	45-125%			
Acenaphthylene	0.783		0.0100	"	"	"		98	"			
Anthracene	0.806		0.0100	"	"	"		101	55-125%			
Benz(a)anthracene	0.746		0.0100	"	"	"		93	50-125%			
Benzo(a)pyrene	0.778		0.0100	"	"	"		97	"			
Benzo(b)fluoranthene	0.788		0.0100	"	"	"		98	45-125%			
Benzo(k)fluoranthene	0.796		0.0100	"	"	"		100	"			
Benzo(b+k)fluoranthene(s)	1.58		0.0200	"	"	1.60		98	"			
Benzo(g,h,i)perylene	0.748		0.0100	"	"	0.800		94	40-125%			

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anderson Geological Project: Sadri Property

PO Box 649 Project Number: 1420.01 Reported:
Wilsonville, OR 97070 Project Manager: Erik Anderson 02/10/14 10:53

QUALITY CONTROL (QC) SAMPLE RESULTS

		Poly	aromatic Hy	yarocarbon	IS (PAF	IS) DY EPA	82/UD SI	IVI				
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 4010665 - EPA 354	6						Soil					
LCS (4010665-BS1)				Prepa	ared: 01/	30/14 13:00	Analyzed:	01/30/14 1	6:03			
Chrysene	0.791		0.0100	"	"	"		99	55-125%			
Dibenz(a,h)anthracene	0.800		0.0100	"	"	"		100	40-125%			
Fluoranthene	0.790		0.0100	"	"	"		99	55-125%			
Fluorene	0.789		0.0100	"	"	"		99	50-125%			
Indeno(1,2,3-cd)pyrene	0.758		0.0100	"	"	"		95	40-125%			
Naphthalene	0.743		0.0100	"	"	"		93	"			
Phenanthrene	0.784		0.0100	"	"	"		98	50-125%			
Pyrene	0.802		0.0100	"	"	"		100	45-125%			
Surr: 2-Fluorobiphenyl (Surr) p-Terphenyl-d14 (Surr)		Re	covery: 91 % 99 %		20 % 20 %	Dila	ution: 1x					
Duplicate (4010665-DUP1)				Prepa	ared: 01/	30/14 13:00	Analyzed:	01/30/14 1	6:55			Q-1
QC Source Sample: WM3-1 (A4A	A0483-03)											
EPA 8270D (SIM)												
Acenaphthene	0.496		0.103	mg/kg dry	5		0.0508				30%	
Acenaphthylene	3.32		0.103	"	"		0.547			143	30%	
Anthracene	1.80		0.103	"	"		0.242			153	30%	
Benz(a)anthracene	5.30		0.103	"	"		0.763			150	30%	
Benzo(a)pyrene	8.14		0.103	"	"		1.23			148	30%	
Benzo(b+k)fluoranthene(s)	15.6		0.205	"	"		2.74			140	30%	Q-26
Benzo(g,h,i)perylene	5.50		0.103	"	"		0.930			142	30%	
Chrysene	8.07		0.103	"	"		1.34			143	30%	
Dibenz(a,h)anthracene	1.37		0.103	"	"		0.235			142	30%	
Fluoranthene	14.8		0.103	"	"		1.92			154	30%	
Fluorene	1.37		0.103	"	"		0.134			164	30%	
Indeno(1,2,3-cd)pyrene	6.10		0.103	"	"		1.05			141	30%	
Naphthalene	1.72		0.103	"	"		0.117			175	30%	
Phenanthrene	14.4		0.103	"	"		1.62			160	30%	
Pyrene	13.4		0.103	"	"		1.79			153	30%	
Surr: 2-Fluorobiphenyl (Surr) p-Terphenyl-d14 (Surr)		Re	covery: 91 % 101 %	Limits: 45-1 30-1	20 % 20 %	Dill	ution: 5x					

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anderson Geological Project: Sadri Property

 PO Box 649
 Project Number:
 1420.01
 Reported:

 Wilsonville, OR 97070
 Project Manager:
 Erik Anderson
 02/10/14 10:53

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total	Metals by E	EPA 602	20 (ICPMS)					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 4010580 - EPA 30	051A						Soil	l				
Blank (4010580-BLK1)				Prepa	ared: 01/2	28/14 12:07	Analyzed:	01/28/14 1	6:23			
EPA 6020A												
Arsenic	ND		1.00	mg/kg wet	10							
Barium	ND		1.00	"	"							
Cadmium	ND		0.200	"	"							
Chromium	ND		1.00	"	"							
Lead	ND		0.200	"	"							
Mercury	ND		0.0800	"	"							
Selenium	ND		1.00	"	"							
Silver	ND		0.200	"	"							
LCS (4010580-BS1)				Prepa	ared: 01/2	28/14 12:07	Analyzed:	01/28/14 1	6:26			
EPA 6020A												
Arsenic	50.1		1.00	mg/kg wet	10	50.0		100	80-120%			
Barium	47.3		1.00	"	"	"		95	"			
Cadmium	49.4		0.200	"	"	"		99	"			
Chromium	49.7		1.00	"	"	"		99	"			
Lead	49.9		0.200	"	"	"		100	"			
Mercury	0.937		0.0800	"	"	1.00		94	"			
Selenium	25.8		1.00	"	"	25.0		103	"			
Silver	22.9		0.200	"	"	"		92	"			
Duplicate (4010580-DUP1)				Prepa	ared: 01/2	28/14 12:07	Analyzed:	01/28/14 1	6:47			
QC Source Sample: EP1-1 (A4	A0483-04)											
EPA 6020A												
Arsenic	ND		4.21	mg/kg dry	10		2.77			***	40%	
Barium	74.1		4.21	"	"		69.3			7	40%	
Cadmium	ND		0.843	"	"		0.501			***	40%	
Chromium	44.7		4.21	"	"		41.9			7	40%	
Lead	13.1		0.843	"	"		12.8			3	40%	
Mercury	ND		0.337	"	"		ND				40%	
Selenium	ND		4.21	"	"		ND				40%	
Silver	ND		0.843	"	"		ND				40%	

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anderson Geological Project: Sadri Property

 PO Box 649
 Project Number:
 1420.01
 Reported:

 Wilsonville, OR 97070
 Project Manager:
 Erik Anderson
 02/10/14 10:53

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total	Metals by E	PA 60	20 (ICPMS))					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 4010580 - EPA 3051	A						Soi	I				
Matrix Spike (4010580-MS1)				Prepa	ared: 01/	28/14 12:07	Analyzed:	01/28/14 1	6:50			
QC Source Sample: EP1-1 (A4A04) EPA 6020A	83-04)											
Arsenic	191		3.75	mg/kg dry	10	188	2.77	100	75-125%			
Barium	249		3.75	"	"	"	69.3	96	"			
Cadmium	189		0.750	"	"	"	0.501	100	"			
Chromium	233		3.75	"	"	"	41.9	102	"			
Lead	199		0.750	"	"	"	12.8	100	"			
Mercury	3.70		0.300	"	"	3.75	ND	99	"			
Selenium	99.7		3.75	"	"	93.6	ND	107	"			
Silver	88.1		0.750	"	"	"	ND	94	"			
Post Spike (4010580-PS1)				Prepa	ared: 01/	29/14 12:23	Analyzed:	01/29/14 1	4:18			
Barium	1180			ug/L	10	566	553	110	80-120%			

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anderson Geological Project: Sadri Property

 PO Box 649
 Project Number: 1420.01
 Reported:

 Wilsonville, OR 97070
 Project Manager: Erik Anderson
 02/10/14 10:53

QUALITY CONTROL (QC) SAMPLE RESULTS

			Dissolve	ed Metals I	by EPA	6020 (ICPI	VIS)					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 4010602 - EPA 30 ⁻	15A - Dissolv	/ed					Wat	er				
Blank (4010602-BLK1)				Prep	oared: 01/2	29/14 08:43	Analyzed:	01/29/14	13:10			
EPA 6020A (Diss)												
Arsenic	ND		1.00	ug/L	1							
Barium	ND		1.00	"	"							
Cadmium	ND		0.200	"	"							
Chromium	ND		1.00	"	"							
Lead	ND		0.200	"	"							
Mercury	ND		0.0800	"	"							
Selenium	ND		1.00	"	"							
Silver	ND		0.200	"	"							
LCS (4010602-BS1)				Prep	oared: 01/2	29/14 08:43	Analyzed:	01/29/14	13:13			
EPA 6020A (Diss)												
Arsenic	53.5		1.00	ug/L	1	55.6		96	80-120%			
Barium	55.0		1.00	"	"	"		99	"			
Cadmium	52.6		0.200	"	"	"		95	"			
Chromium	55.6		1.00	"	"	"		100	"			
Lead	56.2		0.200	"	"	"		101	"			
Mercury	1.00		0.0800	"	"	1.11		90	"			
Selenium	26.4		1.00	"	"	27.8		95	"			
Silver	27.1		0.200	"	"	"		97	"			
Duplicate (4010602-DUP1)				Prep	oared: 01/2	29/14 08:43	Analyzed:	01/29/14	13:22			
QC Source Sample: EM2-W (AGEPA 6020A (Diss)	4A0483-17)											
Arsenic	ND		1.00	ug/L	1		ND				20%	
Barium	28.5		1.00	ug/L	"		27.3			4	20%	
Cadmium	ND		0.200	"	"		ND				20%	
Chromium	ND		1.00	,,	"		0.678			***	20%	
Lead	ND ND		0.200	"	"		0.078 ND				20%	
Mercury	ND ND		0.200	"	"		ND ND				20%	
ž				"	,,					***	20%	
Selenium	ND		1.00	"	,,		0.633					
Silver	ND		0.200				ND				20%	

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anderson Geological Project: Sadri Property

 PO Box 649
 Project Number:
 1420.01
 Reported:

 Wilsonville, OR 97070
 Project Manager:
 Erik Anderson
 02/10/14 10:53

QUALITY CONTROL (QC) SAMPLE RESULTS

Dissolved Metals by EPA 6020 (ICPMS)													
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch 4010602 - EPA 301	5A - Dissolv	/ed					Wat	er					
Matrix Spike (4010602-MS1)				Pre	pared: 01/	29/14 08:43	Analyzed:	01/29/14 1	3:25				
QC Source Sample: EM2-W (A4A EPA 6020A (Diss)	A0483-17)												
Arsenic	54.0		1.00	ug/L	1	55.6	ND	97	75-125%				
Barium	83.0		1.00	"	"	"	27.3	100	"				
Cadmium	52.6		0.200	"	"	"	ND	95	"				
Chromium	57.1		1.00	"	"	"	0.678	102	"				
Lead	55.5		0.200	"	"	"	ND	100	"				
Mercury	1.06		0.0800	"	"	1.11	ND	95	"				
Selenium	27.2		1.00	"	"	27.8	0.633	96	"				
Silver	27.2		0.200	"	"	"	ND	98	"				

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anderson Geological Project: Sadri Property

 PO Box 649
 Project Number: 1420.01
 Reported:

 Wilsonville, OR 97070
 Project Manager: Erik Anderson
 02/10/14 10:53

QUALITY CONTROL (QC) SAMPLE RESULTS

				Percent	Dry We	ight						
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 4010513 - Total Sol	ids (Dry W	eight)					Soil					
Duplicate (4010513-DUP2)				Prep	ared: 01/	24/14 14:06	Analyzed:	01/27/14 10	00:			
QC Source Sample: EP2-1 (A4A0) EPA 8000C	483-05)											
% Solids	32.8		1.00	% by Weight	1		32.4			1	20%	
Duplicate (4010513-DUP3)				Prep	pared: 01/	24/14 14:06	Analyzed:	01/27/14 10	00:00			
QC Source Sample: IP1-1 (A4A04	83-10)											
EPA 8000C												
% Solids	33.7		1.00	% by Weight	1		33.6			0.3	20%	

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anderson Geological Project: Sadri Property

PO Box 649 Project Number: 1420.01 Reported:
Wilsonville, OR 97070 Project Manager: Erik Anderson 02/10/14 10:53

SAMPLE PREPARATION INFORMATION

		Hydroc	arbon Identification	Screen by NWTPH-H	CID		
Prep: NWTPH-HCII	D (Soil)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 4010516							
A4A0483-14	Soil	NWTPH-HCID	01/22/14 11:44	01/24/14 14:56	8.85g/10mL	10g/10mL	1.13
A4A0483-15	Soil	NWTPH-HCID	01/22/14 11:58	01/24/14 14:56	8.81g/10mL	10g/10mL	1.14
		Die	sel and Oil Hydroca	rbons by NWTPH-Dx			
Prep: EPA 3510C (A	Acid Extra	ction)			Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 4010586							
A4A0483-16	Water	NWTPH-Dx	01/21/14 12:20	01/28/14 13:45	1020mL/5mL	1000mL/5mL	0.98
A4A0483-17	Water	NWTPH-Dx	01/21/14 15:40	01/28/14 13:45	1060mL/5mL	1000mL/5mL	0.94
Prep: EPA 3546 (F	uels)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 4010589			•	•			
A4A0483-04	Soil	NWTPH-Dx	01/21/14 13:06	01/28/14 14:50	8.58g/5mL	10g/5mL	1.17
A4A0483-05	Soil	NWTPH-Dx	01/21/14 13:20	01/28/14 14:50	10.09g/5mL	10g/5mL	0.99
A4A0483-06	Soil	NWTPH-Dx	01/21/14 13:46	01/28/14 14:50	8.14g/5mL	10g/5mL	1.23
A4A0483-10	Soil	NWTPH-Dx	01/22/14 09:42	01/28/14 14:50	6.96g/5mL	10g/5mL	1.44
A4A0483-11	Soil	NWTPH-Dx	01/22/14 09:56	01/28/14 14:50	6.37g/5mL	10g/5mL	1.57
		Diesel and Oil I	Hydrocarbons by NV	VTPH-Dx with Silica G	Gel Cleanup		
Prep: EPA 3546 (Fu	uels) w/Sili	ca Gel+Acid (NWTP	PH)		Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 4010581							
A4A0483-01	Soil	NWTPH-Dx/SG	01/21/14 10:38	01/28/14 12:16	11.27g/5mL	10g/5mL	0.89
A4A0483-02	Soil	NWTPH-Dx/SG	01/21/14 11:20	01/28/14 12:16	11.59g/5mL	10g/5mL	0.86
A4A0483-03	Soil	NWTPH-Dx/SG	01/21/14 11:45	01/28/14 12:16	11.03g/5mL	10g/5mL	0.91
A4A0483-07RE1	Soil	NWTPH-Dx/SG	01/21/14 14:38	01/28/14 12:16	12.04g/5mL	10g/5mL	0.83
A4A0483-08	Soil	NWTPH-Dx/SG	01/21/14 14:56	01/28/14 12:16	11.62g/5mL	10g/5mL	0.86
A4A0483-09	Soil	NWTPH-Dx/SG	01/21/14 15:10	01/28/14 12:16	11.44g/5mL	10g/5mL	0.87
A4A0483-12	Soil	NWTPH-Dx/SG	01/22/14 11:00	01/28/14 12:16	12.03g/5mL	10g/5mL	0.83
A4A0483-13	Soil	NWTPH-Dx/SG	01/22/14 11:14	01/28/14 12:16	12.74g/5mL	10g/5mL	0.79
		Vol	atile Organic Compo	ounds by EPA 8260B			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darwin Thomas, Business Development Director

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anderson Geological Project: Sadri Property

PO Box 649 Project Number: 1420.01 Reported:
Wilsonville, OR 97070 Project Manager: Erik Anderson 02/10/14 10:53

SAMPLE PREPARATION INFORMATION

		Vol	atile Organic Comp	ounds by EPA 8260B			
Prep: EPA 5030B					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 4010459							
A4A0483-16RE1	Water	EPA 8260B	01/21/14 12:20	01/22/14 14:51	5mL/5mL	5mL/5mL	1.00
A4A0483-17RE1	Water	EPA 8260B	01/21/14 15:40	01/22/14 14:51	5mL/5mL	5mL/5mL	1.00
Prep: EPA 5035A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 4010643							
A4A0483-03	Soil	5035/8260B	01/21/14 11:45	01/30/14 12:19	11.856g/10mL	10g/10mL	0.84
A4A0483-07	Soil	5035/8260B	01/21/14 14:38	01/30/14 12:19	12.776g/10mL	10g/10mL	0.78
A4A0483-12	Soil	5035/8260B	01/22/14 11:00	01/30/14 12:19	11.469g/10mL	10g/10mL	0.87
		Po	olychlorinated Biphe	enyls by EPA 8082A			
Prep: EPA 3546					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 4010576							
A4A0483-04RE1	Soil	EPA 8082A	01/21/14 13:06	01/28/14 10:02	10.61g/5mL	10g/5mL	0.94
A4A0483-05	Soil	EPA 8082A	01/21/14 13:20	01/28/14 10:02	10.54g/5mL	10g/5mL	0.95
A4A0483-06	Soil	EPA 8082A	01/21/14 13:46	01/28/14 10:02	10.39g/5mL	10g/5mL	0.96
A4A0483-10	Soil	EPA 8082A	01/22/14 09:42	01/28/14 10:02	10.26g/5mL	10g/5mL	0.98
A4A0483-11	Soil	EPA 8082A	01/22/14 09:56	01/28/14 10:02	9.84g/5mL	10g/5mL	1.02
A4A0483-14	Soil	EPA 8082A	01/22/14 11:44	01/28/14 10:02	10.2g/5mL	10g/5mL	0.98
A4A0483-15	Soil	EPA 8082A	01/22/14 11:58	01/28/14 10:02	10.59g/5mL	10g/5mL	0.94
Batch: 4020003							
A4A0483-03	Soil	EPA 8082A	01/21/14 11:45	02/03/14 07:36	10.52g/5mL	10g/5mL	0.95
Batch: 4020035							
A4A0483-07RE1	Soil	EPA 8082A	01/21/14 14:38	02/04/14 07:07	10.32g/5mL	10g/5mL	0.97
A4A0483-12RE1	Soil	EPA 8082A	01/22/14 11:00	02/04/14 07:07	10.84g/5mL	10g/5mL	0.92
		Polyaron	natic Hydrocarbons	(PAHs) by EPA 8270D	SIM		
Prep: EPA 3546					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 4010665							
A4A0483-03	Soil	EPA 8270D (SIM)	01/21/14 11:45	01/30/14 13:00	10.55g/5mL	10g/5mL	0.95

Apex Laboratories

A4A0483-07

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

10.43g/5mL

01/30/14 13:00

Soil

EPA 8270D (SIM)

01/21/14 14:38

0.96

10g/5mL

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anderson Geological Project: Sadri Property

PO Box 649 Project Number: 1420.01 Reported:
Wilsonville, OR 97070 Project Manager: Erik Anderson 02/10/14 10:53

SAMPLE PREPARATION INFORMATION

		Polyaron	natic Hydrocarbons	(PAHs) by EPA 8270D	SIM		
Prep: EPA 3546					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
A4A0483-07RE1	Soil	EPA 8270D (SIM)	01/21/14 14:38	01/30/14 13:00	10.43g/5mL	10g/5mL	0.96
A4A0483-10	Soil	EPA 8270D (SIM)	01/22/14 09:42	01/30/14 13:00	10.78g/5mL	10g/5mL	0.93
A4A0483-12	Soil	EPA 8270D (SIM)	01/22/14 11:00	01/30/14 13:00	10.62g/5mL	10g/5mL	0.94
			Total Metals by EF	PA 6020 (ICPMS)			
Prep: EPA 3051A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 4010580			<u> </u>	-			
A4A0483-01	Soil	EPA 6020A	01/21/14 10:38	01/28/14 12:07	0.465g/50mL	0.5g/50mL	1.08
A4A0483-02	Soil	EPA 6020A	01/21/14 11:20	01/28/14 12:07	0.5g/50mL	0.5g/50mL	1.00
A4A0483-03	Soil	EPA 6020A	01/21/14 11:45	01/28/14 12:07	0.458g/50mL	0.5g/50mL	1.09
A4A0483-04	Soil	EPA 6020A	01/21/14 13:06	01/28/14 12:07	0.503g/50mL	0.5g/50mL	0.99
A4A0483-05	Soil	EPA 6020A	01/21/14 13:20	01/28/14 12:07	0.481g/50mL	0.5g/50mL	1.04
A4A0483-06	Soil	EPA 6020A	01/21/14 13:46	01/28/14 12:07	0.496g/50mL	0.5g/50mL	1.01
A4A0483-07	Soil	EPA 6020A	01/21/14 14:38	01/28/14 12:07	0.477g/50mL	0.5g/50mL	1.05
A4A0483-08	Soil	EPA 6020A	01/21/14 14:56	01/28/14 12:07	0.488g/50mL	0.5g/50mL	1.02
A4A0483-09	Soil	EPA 6020A	01/21/14 15:10	01/28/14 12:07	0.456g/50mL	0.5g/50mL	1.10
A4A0483-10	Soil	EPA 6020A	01/22/14 09:42	01/28/14 12:07	0.466g/50mL	0.5g/50mL	1.07
A4A0483-11	Soil	EPA 6020A	01/22/14 09:56	01/28/14 12:07	0.511g/50mL	0.5g/50mL	0.98
A4A0483-14	Soil	EPA 6020A	01/22/14 11:44	01/28/14 12:07	0.455g/50mL	0.5g/50mL	1.10
A4A0483-15	Soil	EPA 6020A	01/22/14 11:58	01/28/14 12:07	0.478g/50mL	0.5g/50mL	1.05
		D	issolved Metals by	EPA 6020 (ICPMS)			
Prep: EPA 3015A -	Dissolved				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 4010602							
A4A0483-16	Water	EPA 6020A (Diss)	01/21/14 12:20	01/29/14 08:43	45 mL/50 mL	45mL/50mL	1.00
A4A0483-17	Water	EPA 6020A (Diss)	01/21/14 15:40	01/29/14 08:43	45mL/50mL	45mL/50mL	1.00
			Percent Dr	y Weight			
Prep: Total Solids	(Dry Weigl	<u>nt)</u>			Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 4010513			1	1			

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anderson Geological Project: Sadri Property

PO Box 649 Project Number: 1420.01 Reported:
Wilsonville, OR 97070 Project Manager: Erik Anderson 02/10/14 10:53

SAMPLE PREPARATION INFORMATION

		-	Percent Dry	y Weight	-		
Prep: Total Solids	(Dry Weight	<u>:)</u>			Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
A4A0483-01	Soil	EPA 8000C	01/21/14 10:38	01/24/14 14:06	1N/A/1N/A	1N/A/1N/A	NA
A4A0483-02	Soil	EPA 8000C	01/21/14 11:20	01/24/14 14:06	1N/A/1N/A	1N/A/1N/A	NA
A4A0483-03	Soil	EPA 8000C	01/21/14 11:45	01/24/14 14:06	1N/A/1N/A	1N/A/1N/A	NA
A4A0483-04	Soil	EPA 8000C	01/21/14 13:06	01/24/14 14:06	1N/A/1N/A	1N/A/1N/A	NA
A4A0483-05	Soil	EPA 8000C	01/21/14 13:20	01/24/14 14:06	1N/A/1N/A	1N/A/1N/A	NA
A4A0483-06	Soil	EPA 8000C	01/21/14 13:46	01/24/14 14:06	1N/A/1N/A	1N/A/1N/A	NA
A4A0483-07	Soil	EPA 8000C	01/21/14 14:38	01/24/14 14:06	1N/A/1N/A	1N/A/1N/A	NA
A4A0483-08	Soil	EPA 8000C	01/21/14 14:56	01/24/14 14:06	1N/A/1N/A	1N/A/1N/A	NA
A4A0483-09	Soil	EPA 8000C	01/21/14 15:10	01/24/14 14:06	1N/A/1N/A	1N/A/1N/A	NA
A4A0483-10	Soil	EPA 8000C	01/22/14 09:42	01/24/14 14:06	1N/A/1N/A	1N/A/1N/A	NA
A4A0483-11	Soil	EPA 8000C	01/22/14 09:56	01/24/14 14:06	1N/A/1N/A	1N/A/1N/A	NA
A4A0483-12	Soil	EPA 8000C	01/22/14 11:00	01/24/14 14:06	1N/A/1N/A	1N/A/1N/A	NA
A4A0483-13	Soil	EPA 8000C	01/22/14 11:14	01/24/14 14:06	1N/A/1N/A	1N/A/1N/A	NA
A4A0483-14	Soil	EPA 8000C	01/22/14 11:44	01/24/14 14:06	1N/A/1N/A	1N/A/1N/A	NA
A4A0483-15	Soil	EPA 8000C	01/22/14 11:58	01/24/14 14:06	1N/A/1N/A	1N/A/1N/A	NA

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anderson Geological Project: Sadri Property

PO Box 649 Project Number: 1420.01 Reported:
Wilsonville, OR 97070 Project Manager: Erik Anderson 02/10/14 10:53

Notes and Definitions

Qualifiers:

C-07	Extract has undergone Sulfuric Acid Cleanup by EPA 3665A, Sulfur Cleanup by EPA 3660B, and Florisil Cleanup by EPA 3620B in
	order to minimize matrix interference.

- EST Result reported as an Estimated Value. Recovery for Lab Control Spike (LCS) is above the upper control limit. Data may be biased high.
- F-03 The result for this hydrocarbon range is elevated due to the presence of individual analyte peaks in the quantitation range that are not representative of the fuel pattern reported.
- Q-17 RPD between original and duplicate sample is outside of established control limits.
- Q-19 Blank Spike Duplicate (BSD) sample analyzed in place of Matrix Spike/Duplicate samples due to limited sample amount available for analysis.
- Q-26 Peak separation for Benzo(b) and Benzo(k)fluoranthenes does not meet method specified criteria. Reported result includes the combined area of the two isomers and should be considered the total of Benzo(b+k)Fluoranthenes.
- Q-39 Results for sample duplicate are significantly higher than the sample results. See duplicate results in QC section of the report.
- Q-41 Estimated Results. Recovery of Continuing Calibration Verification sample above upper control limit for this analyte. Results are likely biased high.
- S-01 Surrogate recovery for this sample is not available due to sample dilution required from high analyte concentration and/or matrix interference.
- S-03 Reextraction and analysis, or analysis of laboratory duplicate, confirms surrogate failure due to sample matrix effect.
- S-05 Surrogate recovery is estimated due to sample dilution required for high analyte concentration and/or matrix interference.
- S-06 Surrogate recovery is outside of established control limits.
- V-16 Sample aliquot was subsampled from the sample container in the laboratory . The subsampled aliquot was not preserved within 48 hours of sampling.

Notes and Conventions:

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis. Results listed as 'wet' or without 'dry'designation are not dry weight corrected.

RPD Relative Percent Difference

MDL If MDL is not listed, data has been evaluated to the Method Reporting Limit only.

WMSC Water Miscible Solvent Correction has been applied to Results and MRLs for volatiles soil samples per EPA 8000C.

Batch QC

Unless specifically requested, this report contains only results for Batch QC derived from client samples included in this report. All analyses were performed with the appropriate Batch QC (including Sample Duplicates, Matrix Spikes and/or Matrix Spike Duplicates) in order to meet or exceed method and regulatory requirements. Any exceptions to this will be qualified in this report. Complete Batch QC results are available upon request. In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) is analyzed to demonstrate accuracy and precision of the extraction and analysis.

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anderson Geological Project: Sadri Property

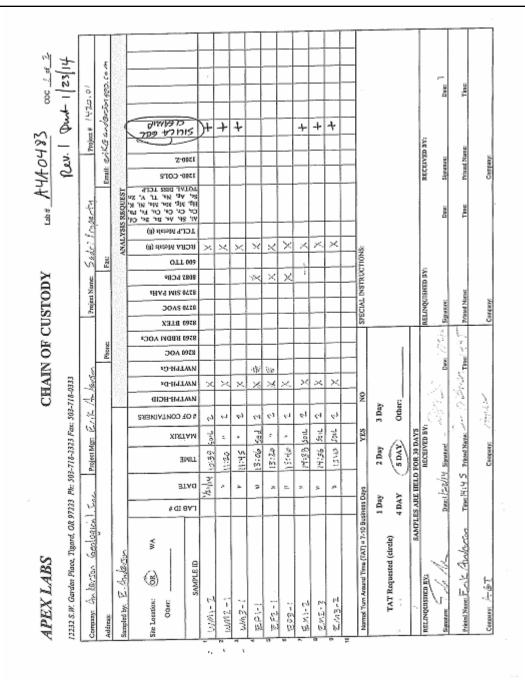
 PO Box 649
 Project Number:
 1420.01
 Reported:

 Wilsonville, OR 97070
 Project Manager:
 Erik Anderson
 02/10/14 10:53

Policy

Apex assesses blank data for potential high bias down to a level equal to ½ the method reporting limit (MRL), except for conventional chemistry and HCID analyses which are assessed only to the MRL. Sample results flagged with a B or B-02 qualifier are potentially biased high if they are less than ten times the level found in the blank for inorganic analyses or less than five times the level found in the blank for organic analyses.

For accurate comparison of volatile results to the level found in the blank; water sample results should be divided by the dilution factor, and soil sample results should be divided by 1/50 of the sample dilution to account for the sample prep factor.


Results qualified as reported below the MRL may include a potential high bias if associated with a B or B-02 qualified blank. B and B-02 qualifications are not applied to J qualified results reported below the MRL.

- --- QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.
- *** Used to indicate a possible discrepency with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anderson GeologicalProject:Sadri PropertyPO Box 649Project Number:1420.01Reported:Wilsonville, OR 97070Project Manager:Erik Anderson02/10/14 10:53

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anderson GeologicalProject:Sadri PropertyPO Box 649Project Number:1420.01Reported:Wilsonville, OR 97070Project Manager:Erik Anderson02/10/14 10:53

12232 S.W. Garrien Place, Ilgard, OR 97223 Ph. 503-718-2323 Faz: 503-718-0333	NR 972.															_				1927 - 128-
Company: Anglaston bealested These	13	Š	ŢĒ.	Project Mgr.							Preji	Project Name:		Sedri	00	Posers		H	Project #	
Address:									Phone					Face		,	Email:			
Sampled by: E. Andia Son						30								NY.	VI.YS	ANALYSIS REQUEST			(
Site Location: OR WA Other:	a qu		3	XIX	CONTAINERS	CPH-HCID	×0-164.1	xo-H41	AOC AOC	RBDM VOCs RTEX	SAOC	SHA9 MIS	PCBs		(ह्य) शमाश्रद त	L DISS TCLP L DISS TCLP L DISS TCLP L DISS TCLP	cors	2	הרפמיזחן ארקביש פיפד	
SAMPLEID	avı	TAG	MIT				_	LANN	_	_	_	8370	2882	6.019		01 SI C1, C Hg. 34 S2, A S2, A	1300-	-0021	5	
1-101-1		Mest.	_	OR42 589	24	-	×		\vdash	_			×	×	-			-	>	F
201-1	_	۸	ğ	19:56 PA	y3		×			_	L		×	×						
5 m d = 1	_	ir	11:20	P Seri	49		×			_				<u>-</u>	H				+	
E/M5-1	-	и	-E	2	e4		×.							_				Г	+	
1-11-11-11		şi	H:49	2	14	×	ogi		_				×	Ĥ	×					
F16.1.2 J	_	Nº	11:58	9	ρā	×	liget,						×	F				\vdash		_
14/11/12/20		$\lambda / \pi t / \tau$	74 CB:25	3	63		火		1		_			_	->4					
£.112-12	-	16.64		W 59.6)	90		×		х		_			25,	 					
	\dashv	4		2.5	-				\vdash	-										_
			_		\dashv		_								_					
Normal Turn Around Time (TAT) = 7-10 Business Days	Bushees	Spays		YES	2	8				₩ 	BCLAL	SPECIAL INSTRUCTIONS:	RUCT	SNS:						
	1 Day	ay	2.1	2 Day	31	3 Day					Ž.	å	algree	中日	* 5	ship have	9	₫.	Worker Somple for metals have been field think oral	horse
IAT Requested (circle)	4 DAY	ΛV	(3)	S DAY	ŏ	Ocher:			1	/5	3270	presend								
	PLES A	SAMPLES ARE HELD FOR 31 DAYS	D FOR	30 DAY	90					Н										
RELINQUISHED BY:			REC	ELVED 3	- 2	4				2	UNUC	истичения ву	87.				RECE	RECEIVED BY:	i.	
Storme 7 1/2 1/1	ä	Date 1/24/14 Spenses	25	Brec	Ş	N	n	H H H	Date (CSC)		Signature					Dae	Signature	E		Date:
Prima Name Forh Angle VCON	ŧ	Threaty ! V S Primed News	2	of Neme		9	Three Three	ुर्द	1	1	Privated Name	ĕ		İ		Time	Private Name	No.		Ture
Company: And T					1	Ž.	2			_										

Apex Laboratories

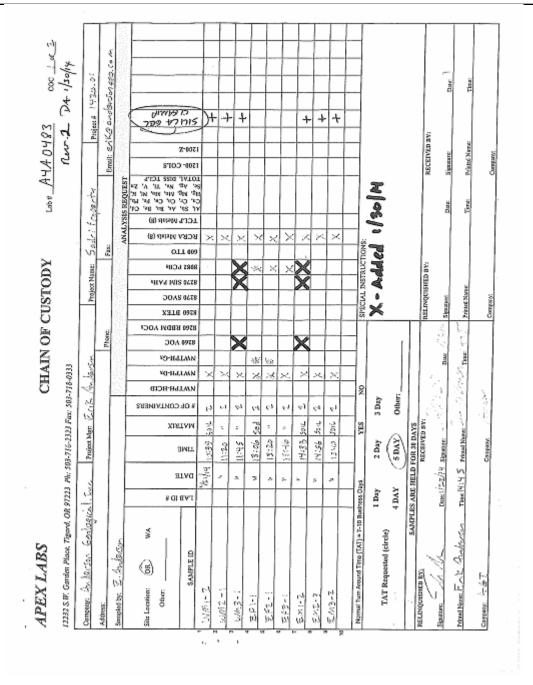
12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anderson GeologicalProject:Sadri PropertyPO Box 649Project Number:1420.01Reported:Wilsonville, OR 97070Project Manager:Erik Anderson02/10/14 10:53

										CHAIN OF COSTOD	3			Lab*				200	coc 7 or 2
12232 S.H. Gurden Place, Tigard, OR 97223 Phr. 563-718-2323 Fax: 563-718-6333	R 97223	7 1911: 50	3-718-2	323 Fa	k: 503-7	78-03	20												
company: Anderson Goological, Suc	عراء	3	Project Mar Erik Anderson	Mgr.	X1.7	30	Ą			Proje	Project Name:		ade	Sadri fragenty	£		- E	Project # 1420.01	
Address:								Phone				Fax	×	-		Email	enk	Email: exik@anglosser.co	S. (. A)
Sampled by: E.Andason					0000								ANA	ANALYSIS REQUEST	NEST				
	# GI I	30	3	KIRI	CONTAINERS	TPH-H97	x9·HdJ	200.0	BLEX BDW AOC*	DOAS	SHA MIS	MDM: OTT	(g) steply (y)	.P Metals (8) b. As, Ba, Bo, Cd. Cr. Co, Cu, Fo, Fo, Fo,	b. As, Ba, Bo, CA, CA, CA, CA, Fo, Fo, Ag, Ma, Ma, M, K, Ag, Ma, TL, V, Za Al, DISS TCLP	5100°	24		
SAMPLE 1D	EV1	TAG	MIL	LVW				_	_	_	-	_	_		7.01 7.01 1.01	1300	1300		_
WM1-2		h/12/,	10:38	Suit	ري	×							×	_					
WM2-1		,	11:20	-	17	×		П	_			-	×						
1-EMM3-1		20	28:11	3	62	×							×						
EP1-1		9	13:06	Sed	2	×		_			_	~	×				_		
EP2-1		я	15:20	3	2	_×						×	×				_		
EP3-1		r.	13:46		2	×					î	×	\times				_		
EM1-2		=	14:39 Set.	고	63	×			-			Н	×				Н		
EM2-3		2	14:56 Solu	8	61	×			-			-	×						
EM3-2		£	15110	185	61	×		\dashv	-			\dashv	×				\dashv		
Normal Tierra Arramed Tierra (TAT) = 7.40 Businesse Please	_			- Jan	- '	- 5		2	9	SPECIAL INSTRUMENT	- ars	-					\dashv		_
Agents for cooling the cooling to th		ş	1	3					_				1						
Total Control of the	1 Day		2 Day		3 Day				_							20			
(Applies passanhay 177	4 DAY	Ų	(spy	_	Other:			ı											
3 SAMPL	ES ARI	HELD	SAMPLES ARE HELD FOR 30 DAYS	SAVS															
KELINQUISHED BY:			RECEIVED BY:	: NB 02	5	۱۷			9	RELANQUISHED BY:	SHED	ä				HECEL	RECEIVED BY:		
Score I to Pa	Date	hlpzel	Date:1/22/14 Streeter	1	Ũ	λl	Dave	Day 1/25/14 Signam	18 18 18 18	2000				Date		System		Date	
Princel Name: Erik Anderson	Time	4145	THE HIYS PRIED NAMED OF STREET WAY	Ĵ	01	12	Time	柔		Printed Name	¥			Tine		Printed Name	Verse	Tenc	
Company A-6T			Contention		Apole				S	Common						O			

A	T . 1	1	
Apex	1.2	nora	iories

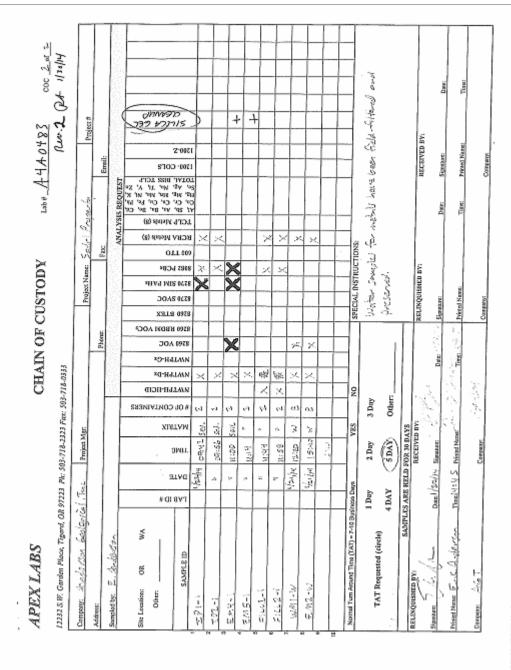
12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax


Anderson GeologicalProject:Sadri PropertyPO Box 649Project Number:1420.01Reported:Wilsonville, OR 97070Project Manager:Erik Anderson02/10/14 10:53

	APEX LABS					•	H	Αľ	0	F.C.	CHAIN OF CUSTODY	2	ρχ			F. J.	7	A440483	3		coc 2.4.2	d
Project Mgs: Proj	12232 S.W. Garden Place, Tigmid, Ol	8 9722	3 Ph: 30	3-718-2	323 Fa	503-7	.78-03	23														
Photo:	Company: Andarson barloni	1/18	ž,	Project A	iš						- 5	oject N	ame	Š	11.1	apreh	1		Project	-		
1 Day 2 Day 3 Day 4 DAY 5 Day 3 Day 4 DAY 5 DA	Address								Phoe	ı,				Š.	-		ď.	ait				
1 1 1 1 1 1 1 1 1 1	Sampled by: E. Andlesson					rougal									KNAL	YSIS REQUE	Į,					
1 Day 2 Day 3 Day 1 Da	Site Location: OR WA		176 Name Transfer												(g) qu	Ec. Bo, Cd. Ct. Fc, Ft. E. Ma, Mi, K. A. Tt. V, Za	4131.8	0				
1/2-4/4 Cot-42 Sop. 2 X	-	e GLBV1	atro	antt	XISTAM				3760 VOC					O.L.I. 009	ис унэн	אנ אה אה. כה כה כה זום אום או	an aviai					
Day	1-10I-1		WEY,	09:42	Sed.	2	×						×		×							
1 11.00 501 2 X X X X X X X X X	1.202-1		s	95:50	ું ઉ	~	_	-					×		×							
1 11:14 1 2 X 2	EM4-1	_	9		Soil	63	~								_							
11.58 12.54 12.55 12.54 14.54 14.55 15.54 14.55 15.54 15.	* EM5-1		7	Hell		44	^	,,														
1 1 1 1 2 2 2 2 2 2	1-1111-1	\perp	F	11:44	^		_	افتون			-	_	×		×		\dashv					
1/2-1/4 (2:4D W & X X X X X X X X X X X X X X X X X X	\$ FILL 2-1	_	ar	85:11	à	\neg	-	ber		-	\dashv		×		×		\vdash					
	W/11-1W		14/1-5/1	(1:3D	3	60	<u> </u>		Ж	\exists	\dashv				×							_
1 Day 2 Day 3 Day 1 Day 4 DAY 5 Day 3 Day 1 Day	* €M2-W		1/12/14			00			×		-				×							
1 Day 2 Day 3 Day 4 DAY 5 DAy Other:		4				\dashv	\dashv	\dashv		\dashv	\dashv	_			\neg	_	\dashv					\exists
1 Day 2 Day 3 Day 4 DAY (5 DA) Other: 10 Day 1 State No. 20 DAYS Day 1 Day 3 Day Track 124 14 Street Name 124 14 15 14 15 Track 14 Street Name 124 14 15 14 15 Corpus 124 14 15 14 15 14 Corpus 124 14 15 14 Corpus 124 14 15 Corpus 124 14 Corpus 124	Normal Turn America These (TAT) = 2-10 Bur	- la	200		N.P.S	- *	۱,	_		95		- SN			T		\dashv	-				T
The HELD FOR 30 DAYS FREE ARE HELD FOR 30 DAYS FREE FOR 30 DAYS		1 Day		2 Day		3 Day					Wat	ý	genera	3	غي	netuls has	ð.	94	4-45	Honel a	Par.	
The State Held For 30 Days RECEIVED BY: Day: 1/22/14 Signature The Prince Name: The Prince Name: Contain: Cont	TAT Requested (circle)	4 DA	\sim	(va)		Other					ρves	3	3									
The 1/24/14 Stream Profession of Profession of Profession of Prince Name: The 1/24/14 Stream Prince Name: The Prince Name: Company Company Company Company Company		ES AR	GUSH 3	OR 30 D	WYS					П												
The 1414 Stream Commerce Company Commerce Company Apple Tring 1445 Tring Name: Company Apple Company Commerce Company	RELINQUISHED BY:		3	RECEIVE	# (J	K.	1		3	= ,	ELING	CISIE	D BV:				2	CEIVED	BY:			
The 1414 S Prized Name Company Apple Tring 1445 Tring Name: These Prized Name: Company Company	Strange (M.M.	Date	11/22	Signatur	3/9	Y	1	Date	Š	\$	canhan					Date	ğ	:ZIRC:		Dax	м	
AGI CONTAIN APPR	Prima Name: East Aulerson	Time	4145	Printed Na	J.	10	2	P	1		Name	2				Tinc	E	and Norse		Tie	,	
				Communic.	`	F	X.			J	Application						č	check				

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax


Anderson GeologicalProject:Sadri PropertyPO Box 649Project Number:1420.01Reported:Wilsonville, OR 97070Project Manager:Erik Anderson02/10/14 10:53

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Anderson GeologicalProject:Sadri PropertyPO Box 649Project Number:1420.01Reported:Wilsonville, OR 97070Project Manager:Erik Anderson02/10/14 10:53

Apex Laboratories