

# Culvert Assessment and Prioritization Plan for Fish Passage in the Tillamook Bay Watershed, Tillamook County, Oregon – Version 1.1



**Tillamook  
Estuaries  
Partnership**

*A National Estuary Project*



Prepared by

**Scott Jay Bailey, Project Manager  
Tillamook Estuaries Partnership  
PO Box 493  
613 Commercial Street  
Garibaldi, Oregon 97118  
503-322-2222**

**September 2012**

### **National Fish and Wildlife Foundation Disclaimer**

*The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the opinions or policies of the National Fish and Wildlife Foundation. Mention of trade names or commercial product does not constitute their endorsement by the National Fish and Wildlife Foundation.*

## Acknowledgements

The document you hold in your hands would not have been possible without the contributions of several organizations and individuals who provided financial, logistical, and technical support for this project. We are grateful for their assistance.

Grants of funds for this project were received from the National Fish and Wildlife Foundation, Oregon Governors Fund for the Environment; Tillamook County Public Works Department; and the Norcross Wildlife Foundation.

Oregon Department of Forestry (Tillamook and Forest Grove districts) and Tillamook County provided spatial data used for Geographic Information System analyses and map production.

Tillamook Motor Company, Inc. helped us obtain and maintain vehicles used by our field crews during the data collection process.

Numerous private landowners allowed us to access their properties to collect field data on road-stream crossings throughout the Tillamook Bay Watershed.

We contracted with the Business Education Compact (BEC), an Oregon nonprofit, to recruit and hire the student interns who helped collect culvert data during summer 2011.

The following individuals provided invaluable technical assistance and review during this project: Scott Bushnell (Oregon Department of Forestry), Mitch Cummings (USDA Natural Resources Conservation Service), Howard Harrison (Oregon Department of Forestry), Chris Knutsen (Oregon Department of Fish and Wildlife), Steve Pilson (Portland State University), Dave Plawman (Oregon Department of Fish and Wildlife), Jeanette Steinbach (Tillamook County Public Works Department), Roger Weeks (Tillamook Motor Company, Inc.), and Liane Welch (Tillamook County Public Works Department).

Field data was predominantly collected during the summer of 2011 by student interns from several Oregon universities: Nathan Atchison, Christian Lauder, Gabrielle Pauling, Joseph Meyer, Jonathan Robertson, and Nicholas Williams. We thank them for all their hard work!

## Table of Contents

|                                      |    |
|--------------------------------------|----|
| 1.0. Introduction.....               | 1  |
| 1.1. Background.....                 | 1  |
| 1.2. Study Area .....                | 1  |
| 2.0. Methods.....                    | 3  |
| 2.1. Preliminary Analyses.....       | 3  |
| 2.2. Field Methods .....             | 3  |
| 2.3. Post-Field Work Analyses .....  | 13 |
| 2.4. Prioritization Action Plan..... | 18 |
| 3.0. Results.....                    | 20 |
| 3.1. Prioritization Analysis .....   | 20 |
| 3.2. Road Ownership Patterns.....    | 31 |
| 3.3. Clustering.....                 | 32 |
| 4.0. Literature Cited .....          | 34 |

## List of Figures

|                                                                                                                                                                                       |    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Figure 1. General overview map of Tillamook Bay Watershed. ....                                                                                                                       | 2  |
| Figure 2. Map of Kilchis River Basin.....                                                                                                                                             | 4  |
| Figure 3. Map of Miami River Basin.....                                                                                                                                               | 5  |
| Figure 4. Map of Tillamook River Basin.....                                                                                                                                           | 6  |
| Figure 5. Map of Trask River Basin .....                                                                                                                                              | 7  |
| Figure 6. Map of Wilson River Basin.....                                                                                                                                              | 8  |
| Figure 7. Map of Tillamook Bay Tributaries.....                                                                                                                                       | 9  |
| Figure 8. Illustration depicting typical points where longitudinal profile data was collected at road-stream crossings in the Tillamook Bay Watershed, Tillamook County, Oregon. .... | 12 |

## List of Tables

|                                                                                                                                   |    |
|-----------------------------------------------------------------------------------------------------------------------------------|----|
| Table 1. US Bureau of Land Management, Coarse screen filter for juvenile salmonid passage assessment, Version 2.2.....            | 14 |
| Table 2. Culvert Prioritization Model used to compare and prioritize culverts in the Tillamook Bay Watershed for replacement..... | 19 |
| Table 3. Prioritization table for Kilchis Basin. ....                                                                             | 23 |
| Table 4. Prioritization table for Miami Basin. ....                                                                               | 24 |
| Table 5. Prioritization table for Tillamook Bay tributaries.....                                                                  | 25 |

|                                                                                                                         |    |
|-------------------------------------------------------------------------------------------------------------------------|----|
| Table 6. Prioritization table for Tillamook Basin.....                                                                  | 26 |
| Table 7. Prioritization table for Trask Basin.....                                                                      | 27 |
| Table 8. Prioritization table for Wilson Basin.....                                                                     | 29 |
| Table 9. Summary of priority ratings and miles of affected upstream habitats across entire Tillamook Bay Watershed..... | 31 |
| Table 10. Summary of road ownership for fish culverts in the Tillamook Bay Watershed .....                              | 31 |

## **Appendices**

|                                                                                                 |    |
|-------------------------------------------------------------------------------------------------|----|
| Appendix 1. Tillamook Bay culvert prioritization field data sheet.....                          | 36 |
| Appendix 2. Culvert tables and cluster maps for each basin in the Tillamook Bay Watershed. .... | 39 |

## **1.0. Introduction**

### **1.1. Background**

Improperly designed, constructed, or damaged culverts and other stream crossing structures can impede passage for migratory fishes and other aquatic wildlife; fragment and disconnect aquatic habitats; impair water quality; and compromise movement of stream bed materials, organic matter, and nutrients. Such structures have been implicated in dramatic reductions in accessible suitable habitats and associated with localized population declines, increased mortality and predation, decreased egg production, and other problems for many different fish species (Meehan 2005). The Tillamook Bay Watershed (the Watershed) consists of numerous stream systems and an extensive road network. As a result there are numerous road crossings within the Watershed, many of which use culverts to convey stream flows.

In the past, the Tillamook Estuaries Partnership (TEP) and partners have pursued opportunistic projects to upgrade culverts known to impede fish passage or impair habitat quality. Fish passage issues also have been addressed during crossing replacement projects where the primary goal was transportation safety or road corridor upkeep. However, until now, we have had insufficient information to develop a more systematic approach and prioritize passage barrier culverts for replacement throughout the Watershed.

In 2006, TEP and several partners completed a project in the Nestucca and Neskowin basins, Tillamook County, Oregon, during which existing and gathered data was used to identify barrier culverts and prioritize them for replacement (based primarily on their potential to impede fish passage and the quantity and quality of upstream habitats [Hoffman 2006]). The information generated during that project has facilitated cooperative efforts in strategically addressing fish passage issues in those watersheds. TEP and our partners regularly consult the final report for that project during work planning and project implementation efforts. Several barrier culvert replacement projects have been implemented in those watersheds as a result of the study. The study reported in this document utilized and built upon techniques and analyses developed during the Nestucca-Neskowin study.

A considerable amount of information on fish distribution and culverts and other potential barriers in the Watershed existed prior to this study. However, much of the information on culverts was outdated or insufficient to compare and contrast culverts and develop a strategic plan to replace fish passage barrier culverts. In addition, these existing data were insufficient to understand the general condition of culverts as needed by agencies responsible for transportation infrastructure.

With the above facts in mind, TEP undertook a project to identify, characterize and prioritize culverts for replacement throughout the Watershed. This document reports on the methods used to accomplish the study and it provides detailed information on culverts throughout the Watershed. Also included are the results of the process used to prioritize these culverts for replacement based primarily on their potential to impede fish passage and the quantity and quality of upstream habitats.

### **1.2. Study Area**

This project investigated road-stream crossings throughout the Tillamook Bay Watershed, Tillamook County, Oregon (Figure 1). Five 5th Field Watersheds contribute freshwater to the bay: Kilchis River

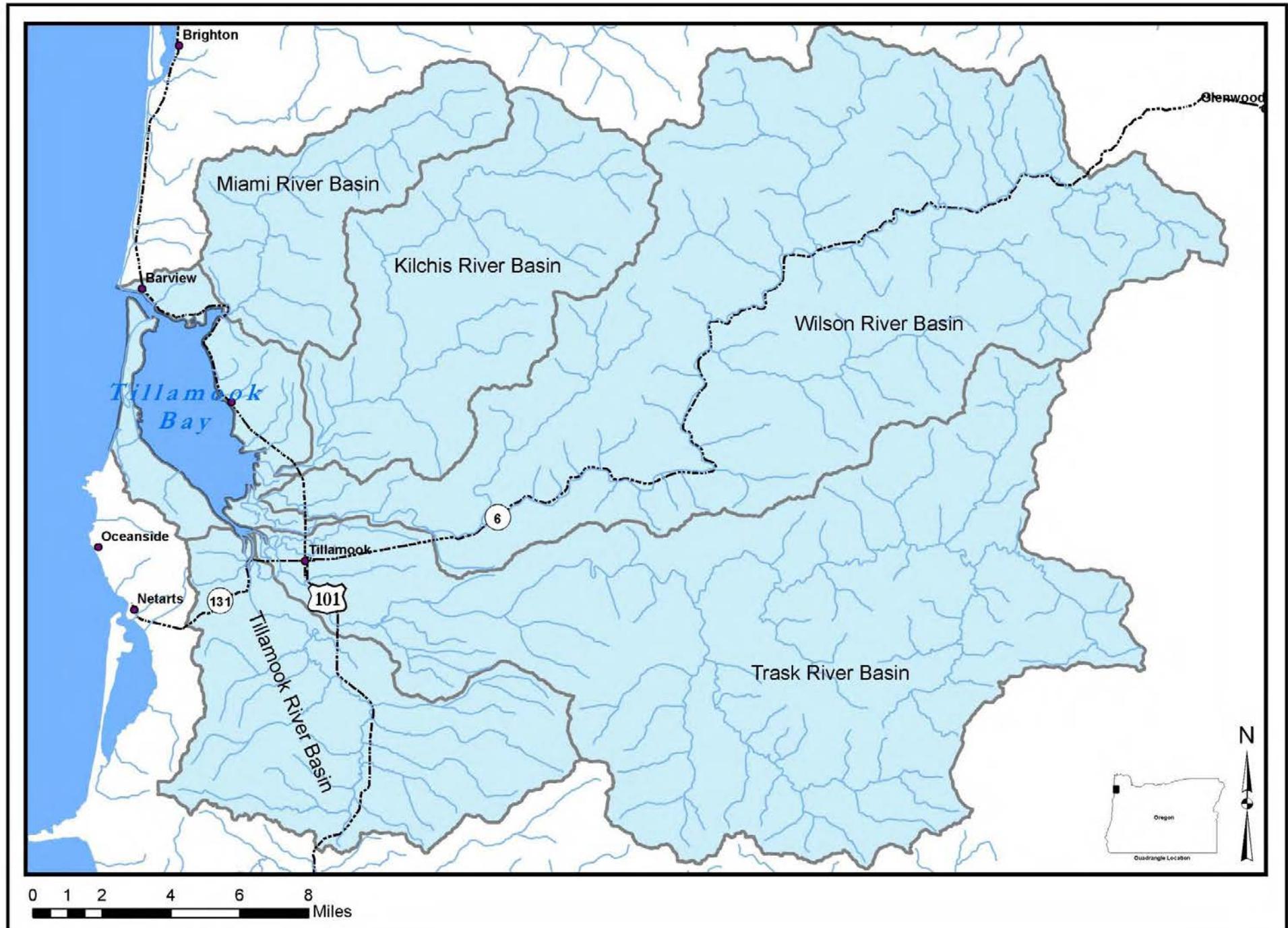



Figure 1. General overview map of Tillamook Bay Watershed.

Basin (Figure 2), Miami River Basin (Figure 3), Tillamook River Basin (Figure 4), Trask River Basin (Figure 5), and Wilson River Basin (Figure 6). In addition, there are several small tributaries that outlet directly into the Bay and are not included in these larger watersheds (Figure 7).

## 2.0. Methods

### 2.1. Preliminary Analyses

We used an ArcGIS (ESRI, Inc.) analysis to preliminarily identify road-stream crossings throughout the Watershed. Two data layers were critical to this automated analysis: a road layer and a stream layer that included stream gradient as one of its data fields. We used this analysis to identify potential crossings anywhere a mapped road intersected a mapped stream segment with a gradient of less than 15 percent slope. We used 15 percent as our cut off to minimize the potential that stream reaches occupied by anadromous fishes would be excluded from our analysis. Anadromous salmonids that regularly occur in the Watershed (Cutthroat trout [*Oncorhynchus clarki*], Steelhead trout [*O. mykiss*], Chum salmon [*O. keta*], Coho salmon [*O. kisutch*], and Chinook salmon [*O. tshawytscha*]) do not typically occupy stream reaches where gradients exceed 15 percent. This initial analysis did not attempt to differentiate between fish-bearing and non fish-bearing streams. We acknowledge that this analysis may not identify all crossings that may affect fish passage within the Watershed, but we believe that it was sufficient to identify a majority of crossings capable of affecting passage.

Using the above GIS analysis, we identified 1,529 potential crossings throughout the Watershed. These potential crossings occurred on roads administered by federal, state, and local governments and private roads owned by industrial and non-industrial land owners. Adjacent lands also were under varied ownership: federal-, state- and county-owned public lands, private industrial forest lands, and private agricultural, commercial and residential properties.

Before beginning field work, we used a Tillamook County taxlot data layer for an additional GIS analysis to identify owners of properties where the GIS-identified crossings occurred. We contacted all private property owners identified during this analysis by mail to request permission to access their property and investigate the crossings. We did not visit crossings that required crossing private lands where access was not provided. Most crossings on public roads were inspected. Access to the adjacent private property was not provided for some public road crossings. When this occurred, we were generally able to collect specific information about the crossing itself (e.g., crossing type, culvert dimensions, culvert gradient, etc.) but sometimes could not directly measure other variables if collecting that information required access outside of the public road right-of-way (e.g., bankfull width, upstream gradient, etc.). In these situations, we recorded visual estimates for such data (if possible). In some instances, the crossing inlet and outlet were outside of the road right-of-way and we were unable to collect most data on the crossing. We include two culverts in this report that meet this description.

### 2.2. Field Methods

#### 2.2.1. Field Training

We hired six college student interns to complete the bulk of field work for this project. Interns completed an approximately two week orientation and training session before they began independent site visits.

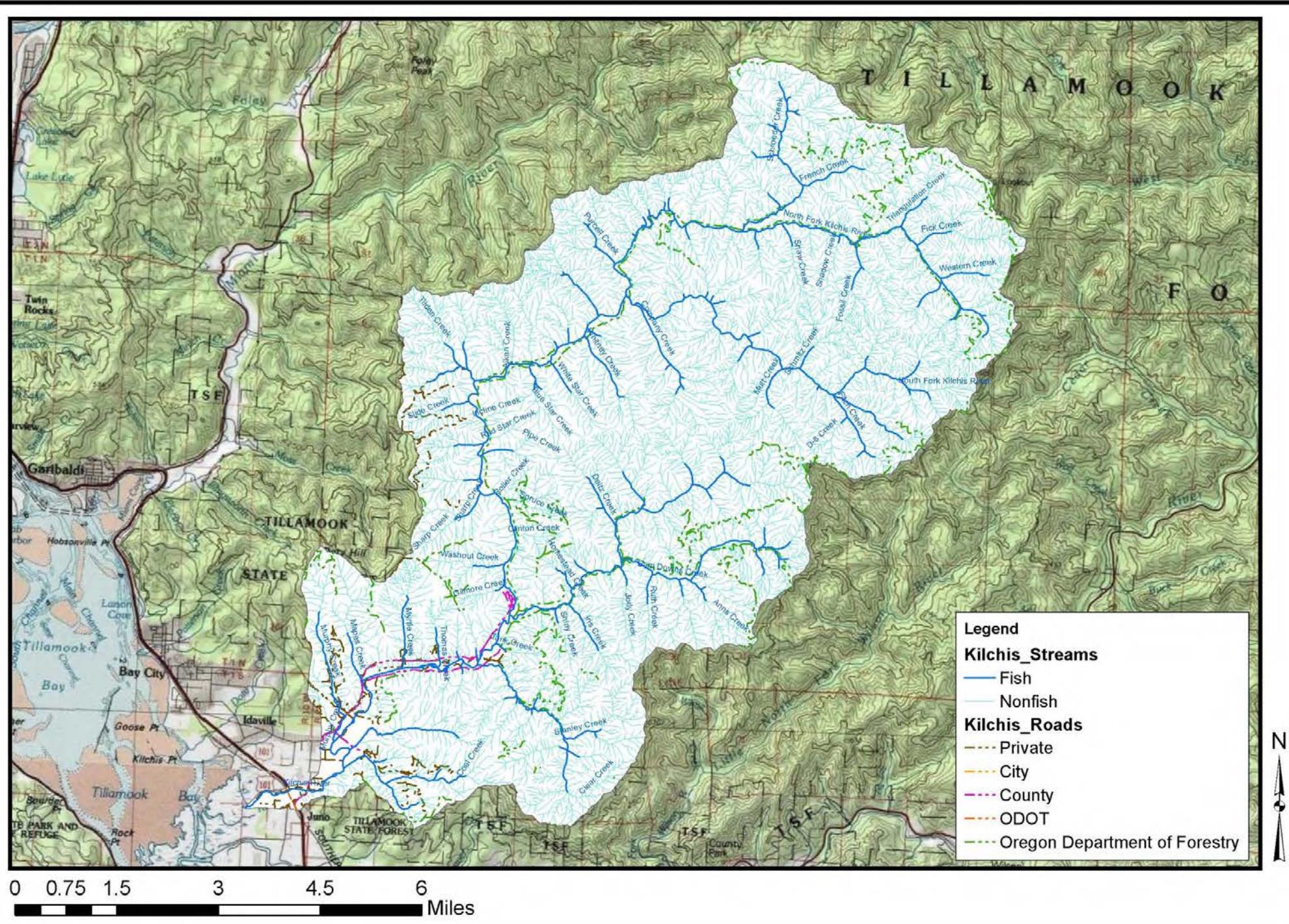



Figure 2. Map of Kilchis River Basin.

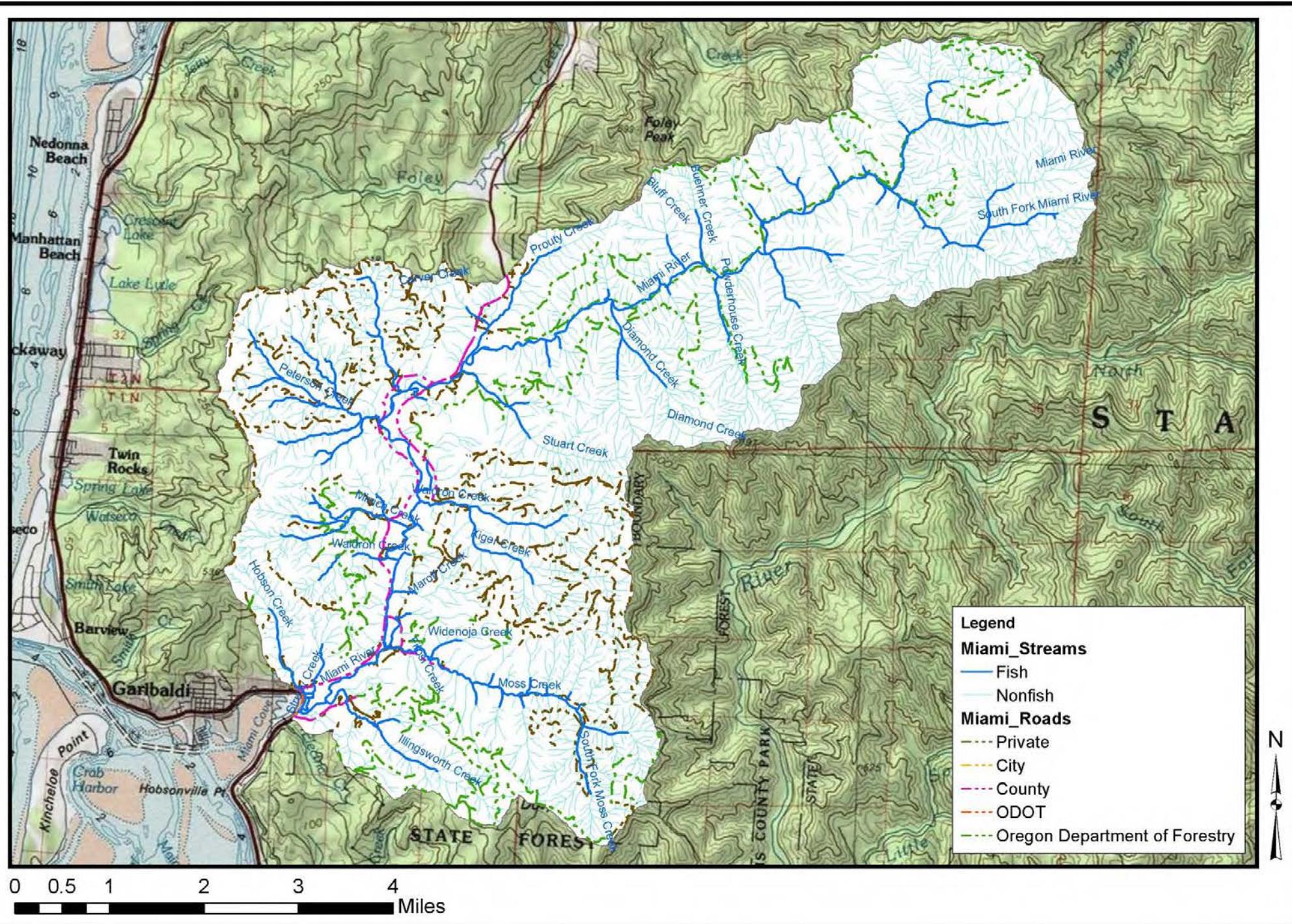



Figure 3. Map of Miami River Basin.

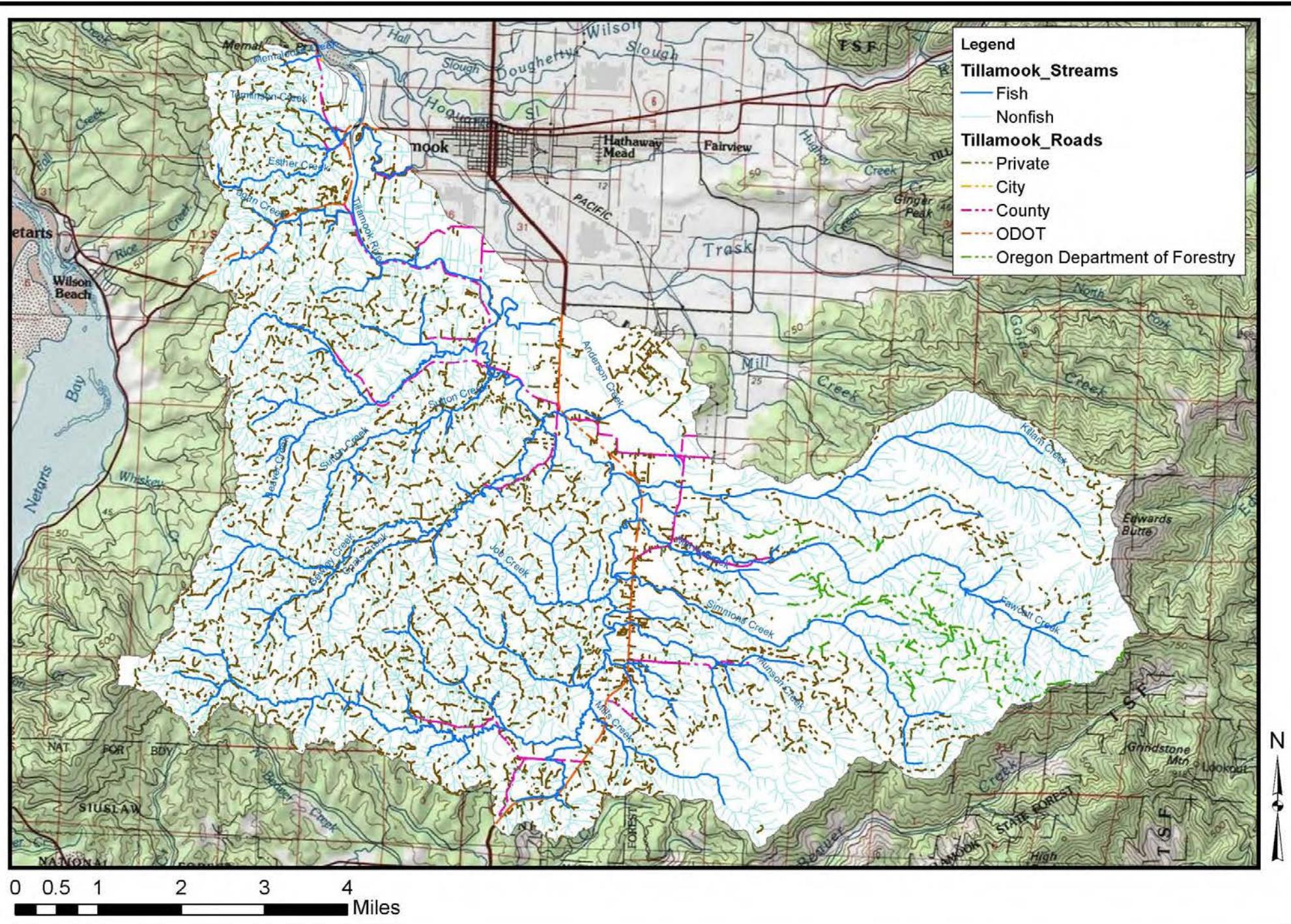



Figure 4. Map of Tillamook River Basin.

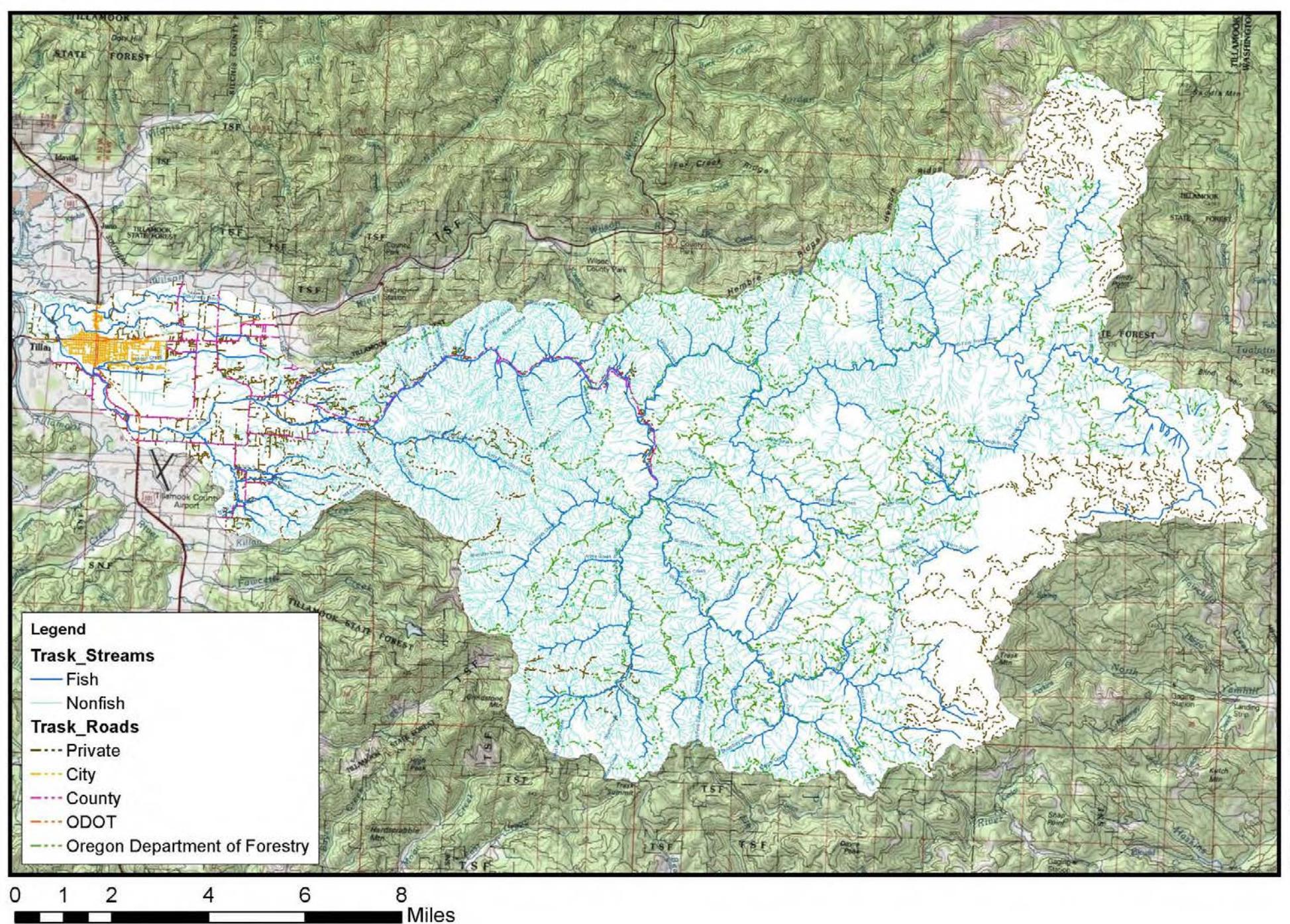



Figure 5. Map of Trask River Basin.

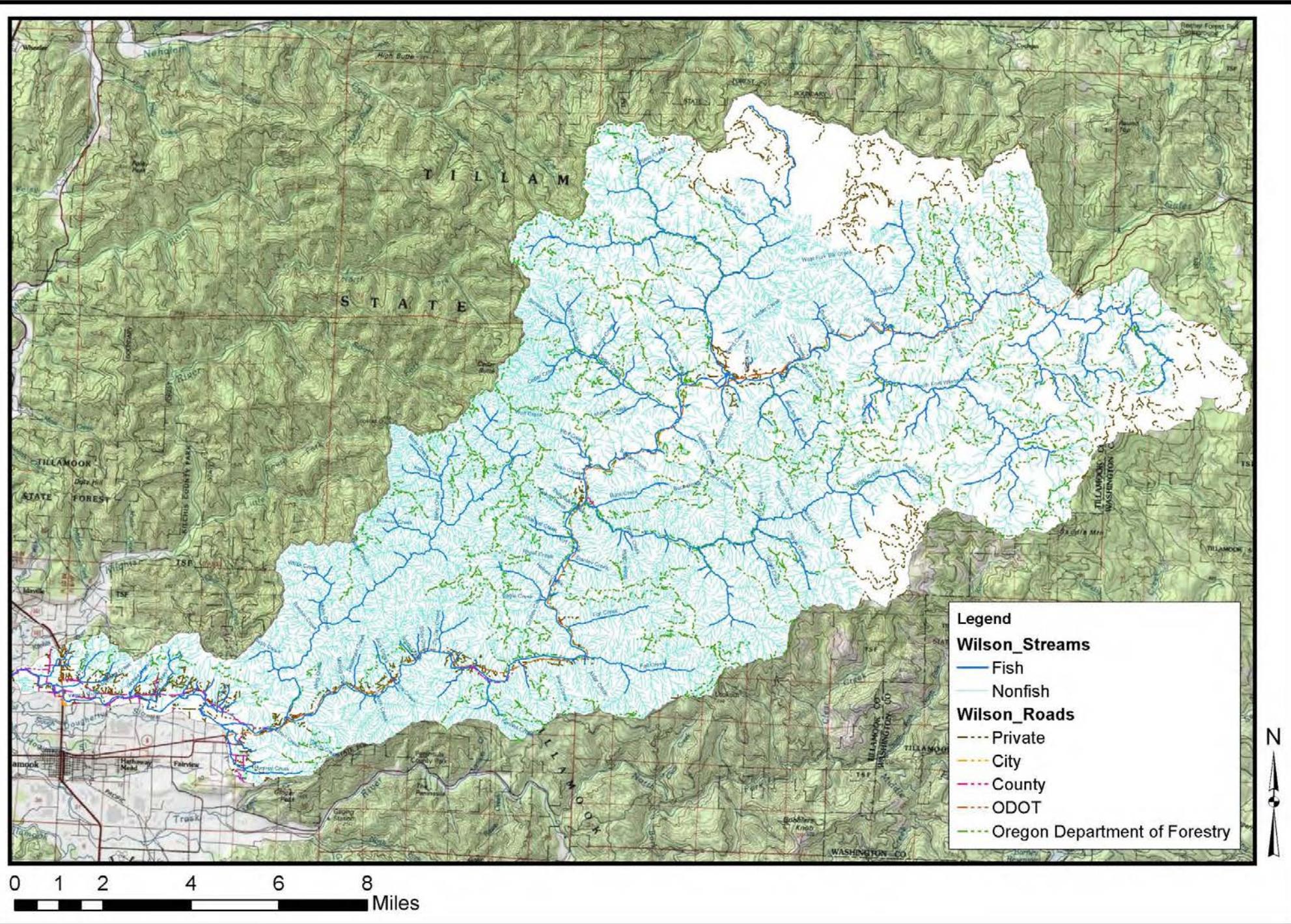



Figure 6. Map of Wilson River Basin.

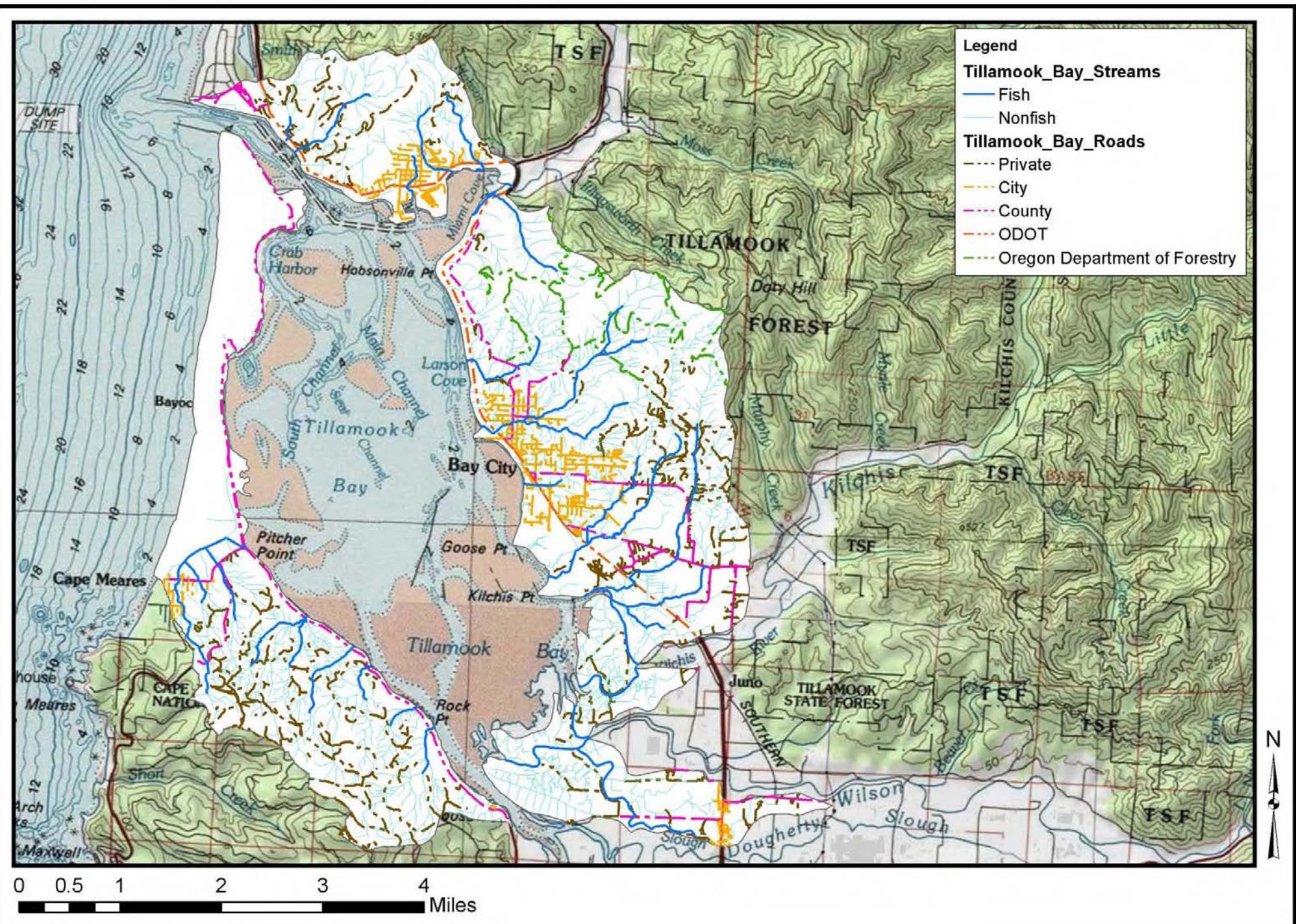



Figure 7. Map of Tillamook Bay Tributaries.

This consisted of two days of classroom training followed by field training. Classroom presentations covered a variety of topics including the Watershed, anadromous fish and their ecology, crossing structure classification and condition assessment, work safety, field methods, data management, etc. Interns spent the remainder of the training period working directly with the Project Manager conducting actual culvert surveys (see below). Together, we surveyed several GIS-identified crossings. This group field effort assured that each intern performed and became familiar with all aspects of the data collection and management process and were collecting data in a similar manner before they worked independently.

### ***2.2.2. Preliminary Classification and Data Collection at Culverts***

After the training, we established three, two-person field crews. Between late June and mid-September, 2011, these crews visited (or attempted to visit) each of the GIS-identified crossings that we had permission to access.<sup>1</sup>

At each crossing, we completed an initial screening process to establish whether the crossing was a “Fish Culvert” or “Not a Fish Culvert” (NFC). This process was the first step of our assessment and prioritization scheme and determined the appropriate data collection effort that the crew would need to complete for each crossing.

Crossings classified as “Fish Culverts” consisted of a culvert crossing structure on a known or potentially fish-bearing stream. The results section of this report primarily addresses these crossings. Crossings classified as NFC were crossings where (a) the crossing structure was something other than a culvert (e.g., a ford or a bridge)<sup>2</sup>, and/or (b) the stream reach was identified as Nonfish and/or appeared to lack suitable habitats for fishes (based on field observations). Although field crews had access to Oregon Department of Forestry (ODF) stream information as presented in figures 2-7 (and discussed in greater detail later in this report), they also made field determinations. The crews assessed whether a stream appeared fish-bearing or non fish-bearing based on a review of in-stream habitats and the surrounding riparian and upland communities (coupled with review of mapped information). This could be a challenging decision and often involved repeat visits and/or post-fieldwork review of additional data sources (e.g., RBA and fish distribution data). It is important to note that these determinations were made outside of the normal period for ODF fish presence/absence surveys and did not follow ODF protocols (ODF 2009).

In a few cases, we made determinations that differed from the ODF designation. There was a single instance, where we made an NFC determination on a stream verified as supporting fish. This culvert (#280) occurs on a small tributary of Elliot Creek in the upper Wilson River Basin. Our crew felt that the stream above this crossing was too small to support fish. The Fish-Verified reach of this stream extends approximately 0.1 miles above culvert #280. Because the segment above the culvert was so short and only resident fish occupy this portion of the Wilson River Basin, we did not return to the crossing to resample. We made a few NFC determinations for crossings on modeled fish streams. This decision was typically made when the stream was very small with marginal instream habitats and highly disturbed riparian and upland communities. There also were instances where the stream appeared capable of supporting fishes (upstream and/or downstream of the culvert), but where topographic and geophysical conditions at or near the culvert seemed to preclude upstream passage regardless of whether a culvert was present (e.g., culvert

<sup>1</sup> Between Fall 2011 and Summer 2012 we completed additional field work to clarify questions regarding previously surveyed pipes and to collect information on crossings not visited while field crews were employed.

<sup>2</sup> These structures were not necessarily on stream reaches that were “non-fish.” In fact, bridges were often on larger streams known to support fish.

built on or near bedrock falls or in other extremely steep gradient conditions).<sup>3</sup> Conversely, we made a few Fish Culvert determinations for crossings on stream reaches designated Nonfish (verified and modeled – see below). These were generally situations where the crossing was located on a stream that appeared capable of supporting fish (at least seasonally) and flowed through naturally vegetated upland and riparian communities. In addition, these crossings also were typically in close proximity to stream reaches known to support salmonids.

During site visits at each fish culvert, crews collected a variety of data to characterize both the culvert and its adjacent stream reach and provide for subsequent analyses (Appendix 1-Crossing Assessment Form). We collected much of this data along a longitudinal profile that extended from above the culvert downstream to below the culvert and included all pertinent points needed to fully characterize the culvert and adjacent stream reach (Figure 8).<sup>4</sup> We used an optical surveyor's level, levelling rod and fiberglass tape measure to collect elevational data along the longitudinal profile. Units for all our levelling rods and fiberglass tapes were decimal feet (i.e., feet, tenths, and hundredths).

We initially established a Temporary Bench Mark (TBM), selected a location for the surveyor's level, and stretched the fiberglass tape measure from upstream to downstream along the stream centerline. The TBM was typically established on the top of the culvert on the inlet side and was given an arbitrary elevation of 100.00 ft (Figure 8). All other elevations were recorded relative to this 100.00 ft TBM. Crews attempted to set up the surveyor's level in a location with a line-of-sight view of all data points depicted on Figure 8. In a few instances, this was not possible and the crew moved the level partway through data collection and followed standard surveying procedures to re-establish Height-of-Instrument (relative to TBM) before continuing collection of elevational data. Elevational data was used for several different calculations needed to characterize fish culverts (see Figure 8 and Section 2.3). In several cases site topography or other obstacles made it impossible to collect longitudinal profile data using surveying equipment. In such instances, crews measured gradients directly using an Abney level and measured perch height directly using the tape measure or levelling rod (if an outlet perch was present).

Crews also collected other data needed to fully characterize each fish culvert in addition to the aforementioned longitudinal profile data (Appendix 1-Crossing Assessment Form). These included:

- several stream attributes (e.g., bankfull width [generally based on an average of three upstream measurements] and substrate conditions),
- culvert location (UTM coordinates, Public Land Survey System coordinates [i.e., Township and Range coordinates], and mile post),
- culvert type (shape and material),
- culvert dimensions (horizontal and vertical measurements),

---

<sup>3</sup> Resident cutthroat trout populations regularly occur upstream of both natural and anthropogenic barriers. However, in these situations, a resident fish passing downstream of these points would likely be incapable of returning upstream whether the culvert was there or not.

<sup>4</sup> Data collection points along the longitudinal profile and methodologies used to measure and analyze these data generally follow Clarkin et al. (2005).

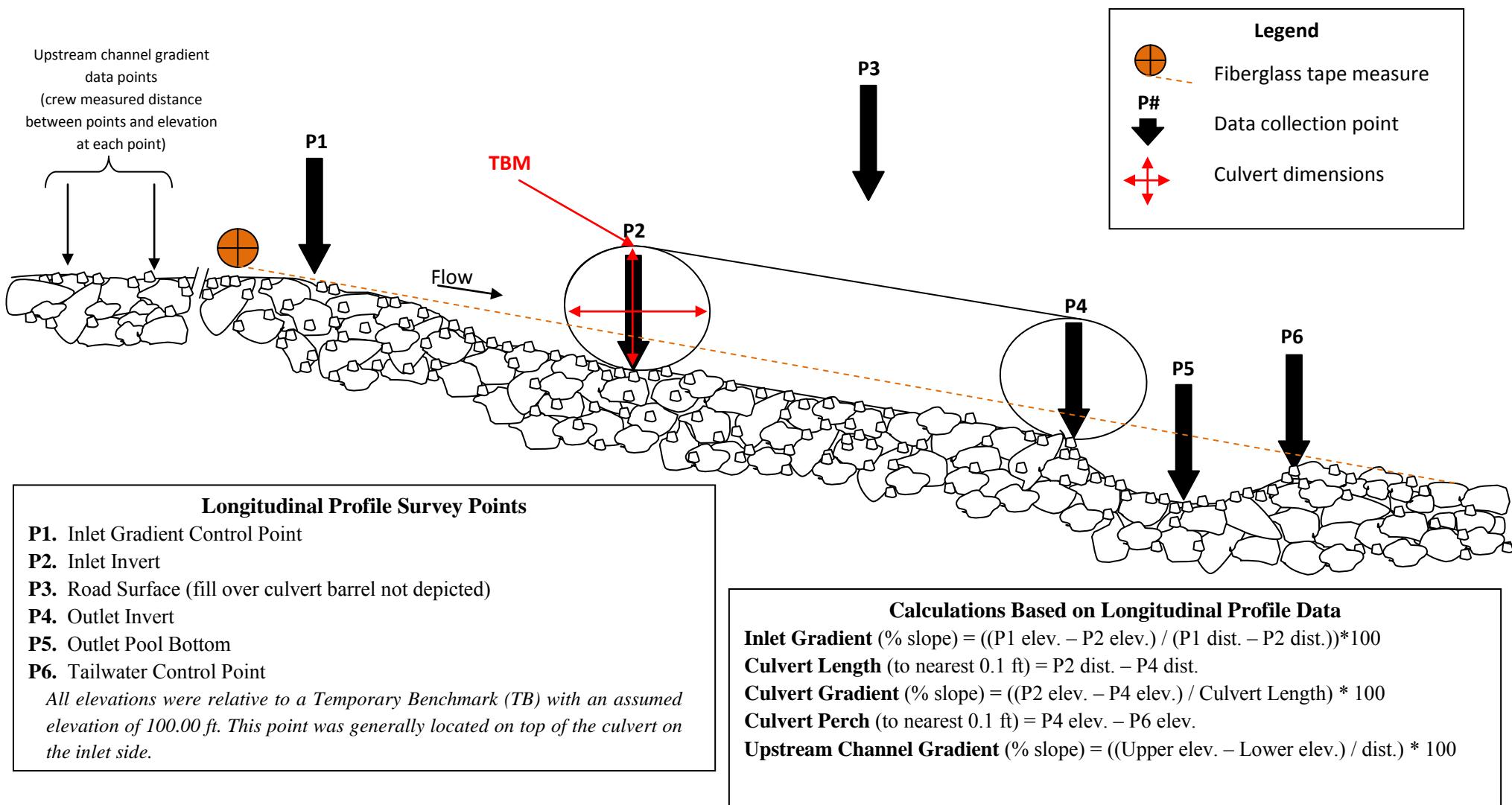



Figure 8. Illustration depicting typical points where longitudinal profile data was collected at road-stream crossings in the Tillamook Bay Watershed, Tillamook County, Oregon. At each of the points indicated, crews recorded both distance along the fiberglass tape and the elevation of the point relative to the Temporary Benchmark (TBM = 100.00 ft) elevation. Drawing also depicts culvert dimensions recorded during field work. Below the drawing are descriptions of longitudinal profile points and the calculations made with these data used to further characterize each culvert.

- culvert condition (problems that could cause the culvert to plug or fail and affect resources [Clarkin et al. 2005] and condition categories developed and used by transportation agencies to assess the condition and performance of culverts [Hunt et al. 2010]), and
- inlet rust line height<sup>5</sup>,

In addition, crews took a series of photographs to better illustrate culvert conditions (inlet, outlet, upstream from inlet, downstream from outlet, and sometimes special condition photos [e.g., excessive corrosion or other damages]). They also drew a site sketch that depicted the culvert relative to the road corridor; locations of the surveyor's level, longitudinal profile data points, photo points; and other pertinent details regarding the crossing (e.g., aprons, wingwalls, riprap, boulders, large wood, etc.).

Crews did not collect the same level of information at crossings initially identified as NFC. For these crossings the crew simply recorded the coordinates of the crossing and noted the type of crossing present (e.g., bridge, culvert, etc.). In a few instances where an NFC culvert was in very poor condition, the crews also noted the condition of the culvert and took photographs.

## 2.3. Post-Field Work Analyses

Following field work, we performed additional analyses to assess the potential for culverts to impede fish passage and determine the amount of potentially suitable habitat upstream of each culvert. We also convened a group of local fisheries biologists and others familiar with the Watershed to classify the quality of habitats upstream of each culvert. We incorporated all of this information into a Prioritization Model, which forms the basis for our recommended replacement strategy. We discuss the above analyses and models in detail below. The scoring strategy for each variable in the Prioritization Model is discussed in Section 2.3.6.

### 2.3.1 Longitudinal Profile Data Analyses

We used longitudinal profile data to calculate several pieces of pertinent information: culvert length, inlet gradient, culvert gradient, upstream channel gradient, and culvert perch height. The formulas for these calculations are shown on Figure 8. We used average bankfull width and the horizontal dimension of the culvert to calculate a Bankfull Width:Culvert Width Ratio. The results of the above calculations for each of the assessed culverts were used in analyses discussed below and are incorporated into tables later in this report.

### 2.3.2. Barrier Determination Model

We used the results of the above calculations and additional information collected in the field in a model that assesses the potential for a culvert to impede fish passage. The result of the barrier determination model is one of the parameters considered in our Prioritization Model (see below).

We selected the BLM Coarse Screen Filter, Version 2.2 as our barrier determination model. (Table 1). This model is based on juvenile salmonid passage potential and was used for a previous TEP culvert

---

<sup>5</sup> Rust lines typically form at the level of persistent high flows on steel culverts (similar staining can occur on concrete pipes). Rust line height is a good indicator of culvert capacity relative to stream flow. Rustline height exceeding 1/3 to 1/2 of the culvert diameter is a good indication that the pipe is undersized for the stream channel and its flows.

Table 1. U.S. Bureau of Land Management Coarse screen filter for juvenile salmonid passage assessment, Version 2.2.

|           | <b>Structure</b>                                                                                                                                                                                    | <b>Green</b>                                                                                                                                         | <b>Gray</b>                                                                                                                                                                                                       | <b>Red</b>                                                                                                                                                               |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>1</b>  | Bottomless pipe arch or countersunk pipe arch, Substrate 100% coverage through pipe and invert depth greater than 20% of culvert rise.                                                              | Culvert installed at channel grade (+/- 1%), culvert span to bankfull width ratio greater than 0.9, no blockage.                                     | Culvert installed at channel grade (+/- 1%), culvert span to bankfull width ratio greater than 0.5, less than or equal to 10% blockage.                                                                           | Culvert not installed at channel grade (+/- 1%), culvert span to bankfull width ratio less than 0.5, greater than 10% blockage.                                          |
| <b>2</b>  | Pipe arches (1x3 corrugation and larger). Substrate less than 100% coverage through pipe or invert depth less than 20% of culvert rise.                                                             | Culvert gradient less than 0.5%, no perch, no blockage, culvert span to bankfull width ratio greater than 0.75.                                      | Culvert gradient between 0.5 to 2.0%, less than 4" perch, less than or equal to 10% blockage, culvert span to bankfull width ratio greater than 0.5.                                                              | Culvert gradient greater than 2.0%, greater than 4" perch, greater than 10% blockage, culvert span to bankfull width ratio less than 0.5.                                |
| <b>3</b>  | Circular CMP or ABS, 48 inch span and smaller, spiral or annular (CMP) corrugations, regardless of substrate coverage.                                                                              | Culvert gradient less than 0.5%, no perch, no blockage, culvert span to bankfull width ratio greater than 0.75                                       | Culvert gradient 0.5 to 1.0%, perch less than 4 inches, less than or equal to 10% blockage, culvert span to bankfull width ratio greater than 0.5.                                                                | Culvert gradient greater than 1.0%, perch greater than 4 inches, blockage greater than 10%, span to bankfull width ratio less than 0.5.                                  |
| <b>4</b>  | Circular CMPs with annular corrugations larger than 1x3 and 1x3 spiral corrugations (>48" span), substrate less than 100% coverage through pipe or invert depth less than 20% culvert rise.         | Culvert gradient less than 0.5%, no perch, no blockage, culvert span to bankfull width ratio greater than 0.75.                                      | Culvert gradient between 0.5 to 2.0%, less than 4" perch, less than or equal to 10% blockage, culvert span to bankfull width ratio greater than 0.5.                                                              | Culvert gradient greater than 2.0%, greater than 4" perch, greater than 10% blockage, culvert span to bankfull width ratio less than 0.5.                                |
| <b>5</b>  | Circular CMPs with 1x3 or smaller annular corrugations (all spans) and 1x3 spiral corrugations (>48" span), 100% substrate coverage through pipe and invert depth greater than 20% of culvert rise. | Culvert gradient less than 1%, no perch, no blockage, culvert span to bankfull width ratio greater than 0.75                                         | Culvert gradient 1.0 to 3.0%, perch less than 4 inches, less than or equal to 10% blockage, culvert span to bankfull width ratio greater than 0.5.                                                                | Culvert gradient greater than 3.0%, perch greater than 4 inches, blockage greater than 10%, culvert span to bankfull width ratio less than 0.5.                          |
| <b>6</b>  | Circular CMPs with 2x6 annular corrugations (all spans), 100% substrate coverage through pipe and invert depth greater than 20% of culvert rise.                                                    | Culvert gradient less than 2.0%, no perch, no blockage, culvert span to bankfull width ratio greater than 0.75                                       | Culvert gradient 2.0 to 4.0%, less than 4" perch, less than or equal to 10% blockage, culvert span to bankfull width ratio greater than 0.5.                                                                      | Culvert gradient greater than 4.0%, greater than 4 inch perch, greater than 10% blockage, culvert span to bankfull width ratio less than 0.5.                            |
| <b>7</b>  | Special items; log stringer or modular bridge,                                                                                                                                                      | No encroachment on bankfull width.                                                                                                                   | Encroachment on bankfull width (either streambank).                                                                                                                                                               | Structural collapse.                                                                                                                                                     |
| <b>8</b>  | Baffled structure installations (all culvert sizes and configurations).                                                                                                                             | No perch, no blockage. Culvert span to bankfull width ratio greater than 0.75. 100% substrate in pipe but baffles protruding.                        | Outlet with less than 6 inch perch, less than or equal to 10% blockage, culvert span to bankfull width ratio greater than 0.5. Less than 100% substrate.                                                          | Perch greater than 6 inches, greater than 10% blockage, culvert span to bankfull width ratio less than 0.5. Less than 100% substrate.                                    |
| <b>9</b>  | Weir installations (all culvert sizes and configurations).                                                                                                                                          | No perch, no blockage. Culvert span to bankfull width ratio greater than 0.75. Weirs provide 6 inch minimum pool depth and no jumps exceed 4 inches. | Outlet with less than 6 inch perch, less than or equal to 10% blockage, culvert span to bankfull width ratio greater than 0.5. Weirs with pool depths less than 6 inches. Jumps over weirs greater than 4 inches. | Perch greater than 6 inches, greater than 10% blockage, culvert span to bankfull width ratio less than 0.5. Weirs without pools, no resting areas. Weir Jumps > 4 inches |
| <b>10</b> | Concrete Box Culverts                                                                                                                                                                               | Culvert backwatered or mostly backwatered w/100% substrate. Culvert span to bankfull width ratio greater than 0.75. No blockage.                     | Culvert gradient up to 2%. Outlet with less than 4 inch perch. 100% substrate in pipe. Culvert span to bankfull ratio greater than 0.5.                                                                           | Perch greater than 4 inches. Culvert span to bankfull ratio less than 0.5. Laminar flow. Less than 100% substrate in pipe.                                               |
| <b>11</b> | Circular concrete and smooth wall ABS culverts.                                                                                                                                                     | 100% substrate in pipe. Slope less than .5%. No Perch                                                                                                | Less than 100% substrate in pipe. Slope .5-1%. Perch less than 4 inches                                                                                                                                           | No substrate. Slope greater than 1% Perch greater than 4 inches.                                                                                                         |

assessment for the Nestucca and Neskowin watersheds (Hoffman 2006).<sup>6</sup> During preparation of that report, the author and her technical advisory committee evaluated this and two other commonly used barrier determination models. They selected this model because it is very conservative in determining whether a culvert is a barrier and it differentiates culverts based on the degree to which juvenile fish passage is impeded.

Based on the type of culvert and a suite of characteristics, the model places culverts into one of three passage categories: Green = Not a Barrier (juveniles are able to move past the culvert under all conditions), Gray = Partial Barrier (under some conditions the culvert may preclude juvenile passage), and Red = Complete Barrier (the culvert may block juvenile passage under all conditions). Within the prioritization model, culverts classified as Green received 1 point, Gray culverts received 2 points, and Red culverts received 3 points.

As also stressed by Hoffman (2006), no barrier model is flawless and the determinations made by employing a model are not absolute (juveniles may occasionally get past a culvert classified as a complete barrier and under some conditions a green culvert may preclude juvenile passage). However, we have confidence in the results of the model. We believe that it provides a good approximation of real-world conditions and is sufficiently rigorous to allow comparisons among culverts.

### ***2.3.3. Upstream Habitat Length***

We used GIS to estimate the linear amount of potentially suitable habitat upstream of each culvert. This is one of the variables in the Culvert Prioritization Model and is termed Upstream Habitat Length (see below). For the prioritization model, upstream habitat lengths were divided into four classes (each encompassing a range of upstream habitat lengths): 0.0 – 0.5 miles, 0.6 – 1.0 miles, 1.1 – 1.5 miles, and > 1.6 miles. Each culvert was placed in one of these four classes based on the total linear amount of suitable habitat upstream of the culvert and scored accordingly (0.0 – 0.5 miles = 1 point, 0.6 – 1.0 miles = 2 points, 1.1 – 1.5 miles = 3 points, > 1.6 miles = 4 points).

We based our decisions for this parameter on a composite of fields in the attribute table of the ODF Stream Layer mentioned previously. These fields are: Fishpres (Fish Presence = Fish, Nonfish, or Unknown), Verfish (Fish Presence Verified? = Verified or Assumed) and Modfish (Fish Presence Modeled = Fish, Nonfish, or Not Modeled<sup>7</sup>). For presentation purposes, we considered six potential categories that result from this composite: Fish-Verified, Fish-Assumed, Fish-Modeled, Nonfish-Verified, Nonfish-Assumed, and Nonfish-Modeled. Figures 2-7 depict these different stream designations. Although we differentiated reaches based on these designations on maps provided in this report, we did not differentiate between the -Verified, -Assumed and -Modeled classifications for our analyses.

The vast majority of crossings we identified as fish culverts, were located on Fish-Verified, Fish-Assumed or Fish-Modeled stream reaches. For these crossings, we consider the amount of potentially

---

<sup>6</sup> Adult salmonids are much more capable swimmers than juveniles and can move past obstacles that would preclude juvenile passage. Using juvenile passage potential results in a more conservative assessment and minimizes the potential for problem culverts to be overlooked. Our model considered a drop of  $\geq 4$  inches to be a juvenile barrier.

<sup>7</sup> Only reaches designated Unknown in the Fishpres field are modeled.

suitable habitat to be the combined length of all reaches designated Fish-Verified, Fish-Assumed and Fish-Modeled upstream of the given culvert.

We used an alternative approach for the few crossings we classified as fish culverts, but which occurred on streams classified as Nonfish-Verified, Nonfish-Assumed and Nonfish-Modeled. For these culverts, the length of upstream habitat was subjective and based on review of stream gradients, intrinsic potential model outputs and other variables. We reviewed this suite of information and used professional opinion to define the upstream limit (generally where stream gradient became excessively steep and intrinsic potential fell to very low values).

We assumed no upstream barriers (anthropogenic or natural) for the upstream habitat length analysis. In other words, we assumed that the entire length of Fish-Verified, Fish-Assumed and Fish-Modeled reaches upstream of the subject culvert were accessible to juvenile salmonids. We acknowledge that this assumption is an oversimplified view of the watershed. There are known and possibly unknown barrier culverts above many of the culverts analyzed for this report (known culverts are included in this prioritization process). Other anthropogenic barriers also may occur. In addition, permanent and temporary natural barriers occur throughout the Watershed. Some of these barriers are known, while others may be unknown. The degree to which many natural obstacles (and unknown anthropogenic features) may impede fish passage also is largely unknown. Some may mark the end of fish distribution altogether, some may only preclude passage under certain conditions, while others may preclude anadromous passage, but may not mark the end of resident fish use.

We also acknowledge that our method places an enormous amount of faith in the data and model outputs used by ODF and Oregon Department of Fish and Wildlife (ODFW) to classify streams throughout the Watershed. The stream classifications are used for regulatory and management decisions, however, so we assume that they are suitably robust for the purpose of our analysis (ODF 2009).

There are a vast number of variables to consider and a great amount of uncertainty is inherent in obtaining results for the Upstream Habitat Length parameter. We believe the method we chose is an objective and data-driven approach to identifying and comparing upstream habitats for the culverts we analyzed and are confident in the results of this analysis.

#### ***2.3.4. Upstream Habitat Quality***

We ranked the quality of habitats upstream of each subject culvert. This also is one of the variables in the Culvert Prioritization Model and is termed Upstream Habitat Quality (see below). Within the prioritization model there are three potential responses for this variable: Poor (1 point), Fair (2 points) and Good (3 points).

To populate this variable for each culvert, we convened a one-day meeting of local fisheries biologists and other technical specialists familiar with streams in the study area and GIS data sets with attributes that imply habitat quality. During this meeting, participants reviewed data for each individual fish culvert evaluated in this study and formulated a consensus opinion on the quality of habitats upstream of each culvert. If a participant had first-hand knowledge regarding a stream (typically information on water quality, in-stream and adjacent habitats, fish survey results, etc.) they provided that information to the group. The group also reviewed a variety of GIS data including mapped fish distributions (ODFW data layers for coho and winter steelhead distributions), juvenile snorkel survey results (Rapid Bio Assessment

[RBA] data – Bio-Surveys, LLC. 2005, 2006 and 2007), output from intrinsic potential models (Burnett et al. 2003 and 2007)<sup>8</sup>, and stream gradients. The group considered this suite of information in its entirety in formulating its consensus opinion for each assessed culvert.

We rated upstream habitat quality as Poor when the following attributes were predominant upstream of the subject culvert: very small streams with limited flows, steep stream gradients (generally > 8 percent gradient), compromised adjacent upland and riparian habitats (adjacent land primarily supporting agricultural, commercial or residential development or subject to recent and ongoing timber harvests, etc.), low intrinsic potential scores (scores generally < 0.300 for both coho and steelhead), and RBA data indicating low numbers of juvenile salmonids upstream of the subject culvert or in nearby reaches if no RBA data exists for reaches upstream of the subject culvert (juvenile coho, cutthroat and steelhead densities generally less than 0.3 fish per square meter of pool surface).

We rated upstream habitat quality as Fair when the following attributes were predominant upstream of the subject culvert: moderate gradients (generally 4-8 percent gradient), forested upland habitats and intact riparian habitats, moderate intrinsic potential scores (intrinsic potential scores generally between 0.300 and 0.600 for coho or steelhead), and RBA data indicating moderate numbers of juvenile salmonids upstream of the subject culvert or in nearby reaches if no RBA data exists for reaches upstream of the subject culvert (juvenile coho, cutthroat or steelhead densities generally ranging from 0.3-1.0 fish per square meter of pool surface).

We rated upstream habitat quality as Good when the following attributes were predominant upstream of the subject culvert: low to moderate gradients (generally < 6 percent gradient), forested upland habitats and intact riparian habitats, moderate to high intrinsic potential scores (intrinsic potential scores generally above 0.500 for coho or steelhead), and RBA data indicating moderate to high numbers of juvenile salmonids upstream of the subject culvert or in nearby reaches if no RBA data exists for reaches upstream of the subject culvert (juvenile coho, cutthroat or steelhead densities generally > 0.8 fish per square meter of pool surface).

In the tables that provide data on each individual culvert we analyzed for this report (see below), we also included a + or – modifier for some culverts. We included this modifier when the evaluation team felt that habitat conditions were somewhat better or somewhat worse than the Poor or Fair classification would otherwise suggest. In a situation where multiple culverts may have the same overall prioritization score and similar habitat quality scores, this qualifier may be used as a “tie breaker” to facilitate strategic planning of culvert replacements.

---

<sup>8</sup> These models are based on physical landscape characteristics that have been positively correlated with productive habitats for coho and steelhead (valley width, channel gradient and mean annual flow). Intrinsic potential scores range from 0.0 to 1.0 (low to high). The models are not a perfect measure of habitat quality because they do not account for actual present conditions that affect habitat quality (e.g. condition of adjacent riparian and upland habitats, water quality and other in-stream conditions, etc.). However, they are one of the few tools that objectively evaluate the habitat potential of individual stream reaches across large geographic areas.

### **2.3.5. Fish Species Present**

We included the type of fish likely to be affected by a given culvert as one of the parameters in our prioritization model. There were three potential responses for this variable: No Fish (1 point), Resident Fish (2 points) and Anadromous Fish (3 points).

By definition, all culverts identified as fish culverts are likely to affect fishes, so we did not apply the “No Fish” category to any culverts evaluated for this report. For the few culverts that we identified as Fish Culverts, but which occurred on Nonfish designated stream reaches (see explanation above), we used the fish classification for the adjacent downstream reaches for that variable in our model. For example, if the adjacent downstream reaches supported anadromous fish, we populated the Fish Presence variable of the model with the value for anadromous fishes (we feel it is reasonable to assume that if a barrier culvert did not exist that the fish using the adjacent downstream reaches would have access to reaches above the subject culvert).

Most culverts in our assessment occurred on streams that are known or potentially occupied by anadromous fishes. As a result, most culverts we analyzed received a full score (3 points) for fish presence. There are a few notable exceptions.

Within the Watershed, there are a few large natural barriers (e.g., University Falls on Elliot Creek in the upper Wilson River Watershed) and anthropogenic barriers (e.g., the dam that forms Barney Reservoir on the Middle Fork North Fork Trask River) that prevent upstream migration of anadromous fishes. A few culverts assessed for this report are located on designated fish streams above these known anadromous barriers. These streams support resident cutthroat trout populations and the culverts on these reaches received scores for resident fish (2 points) within the prioritization model.

### **2.3.6. Prioritization Model**

Results from the above analyses were incorporated into a Prioritization Model which yields a composite score for each culvert (Table 2). We used the model developed and used by Hoffman (2006) for this analysis.

Hoffman’s model essentially compares culverts against one another by giving each a composite score based upon the severity of the barrier, the quantity and quality of upstream habitats, and the types of fish affected (resident or anadromous). The results of this model form the basis of our prioritization plan and are incorporated into tables later in this report.

## **2.4. Prioritization Action Plan**

The final step in this culvert assessment project was to develop a plan to facilitate and guide replacement of fish passage barrier culverts in the Watershed based primarily on the outcomes of the above analyses. Our goal was to collect up-to-date information on as many potential barrier culverts as possible, make objective comparisons among these culverts, and facilitate development and implementation of projects to replace barrier culverts in a fashion that maximizes benefits to fishes.

Table 2. Culvert Prioritization Model used to compare and prioritize culverts in the Tillamook Bay Watershed for replacement.

| Parameter                | Points | Criteria               | Criteria Based on                                                                                                    |
|--------------------------|--------|------------------------|----------------------------------------------------------------------------------------------------------------------|
| Barrier Severity         | 1      | Not a Barrier (Green)  | Juvenile Barrier Determination Model (BLM Coarse Screen Filter Version 2.2).                                         |
|                          | 2      | Partial Barrier (Gray) |                                                                                                                      |
|                          | 3      | Complete Barrier (Red) |                                                                                                                      |
| Upstream Habitat Length  | 1      | 0.0 – 0.5 miles        | Fish presence fields in Oregon Department of Forestry GIS stream layer.                                              |
|                          | 2      | 0.6 – 1.0 miles        |                                                                                                                      |
|                          | 3      | 1.1 – 1.5 miles        |                                                                                                                      |
|                          | 4      | >1.6 miles             |                                                                                                                      |
| Upstream Habitat Quality | 1      | Poor                   | Professional judgment of advisory committee. Supported by review of several GIS data layers and firsthand knowledge. |
|                          | 2      | Fair                   |                                                                                                                      |
|                          | 3      | Good                   |                                                                                                                      |
| Fish Species Present     | 1      | No Fish                | Review of GIS fish distribution data.                                                                                |
|                          | 2      | Resident               |                                                                                                                      |
|                          | 3      | Anadromous             |                                                                                                                      |

As noted above, the Tillamook Bay Watershed is quite large and is composed of five river basins and numerous tributaries that outlet directly to the bay. Larger basins (e.g., Trask and Wilson basins) have greater numbers of larger (longer) streams than the smaller basins (e.g., Miami and Kilchis basins). Thus, more culverts in the larger basins are likely to receive the maximum score for the Upstream Habitat Length parameter of the prioritization model than in smaller basins. As a result, comparing culverts across all basins would disproportionately bias our results towards the larger basins. To make our prioritization scheme more user-friendly, facilitate its use by partners that may work more in one portion of the Watershed than others, and remove the aforementioned potential source of bias we based our prioritization recommendations and present our findings below using a basin-by-basin format (rather than lumping culverts across all basins).

We ranked culverts with higher prioritization model scores as higher priority for replacement than those with lower scores. However, many culverts scored equally and the spread between the lowest and highest ranking culverts in some basins was only a few points. When end users use this document for planning replacement projects, we suggest that they use differences in ecological factors discussed above (e.g., + or – “tie breaker” modifier for habitat quality, actual Upstream Habitat Length values, etc.) and overall culvert condition scores to further inform their decision making processes.

Our goal was to prioritize culverts based on objective and measurable variables and facilitate an efficient and effective replacement strategy to improve conditions for fish populations in the Watershed. We recognize that some potential replacements may be easier to implement than others based on potential

willingness of landowners to participate, potential to obtain funding, and other factors. However, it is beyond the scope of this project to consider such factors associated with replacement projects and, thus, they were not incorporated into our ranking process.

### **3.0. Results**

We identified 1,526 potential crossings through the initial GIS-based identification effort discussed above.<sup>9</sup> We did not receive permission to access 362 of the GIS-identified crossing locations that occurred on private lands or required travel on private roadways. In addition, we determined that 311 of the GIS-identified crossings do not exist (DNE). We identified a crossing as DNE for one of two reasons: (1) the road on which the crossing was expected to occur did not exist (typically these roads had been decommissioned by the land owner), or (2) the GIS-identified crossing was what our field crews referred to as a “Phantom Crossing.” We believe phantom crossings were identified in GIS due to errors in the spatial data sets used for the analysis or errors associated with the geospatial analysis used to identify intersections of road and stream polylines. Phantom crossings occurred primarily where road and stream polylines ran parallel, and in very close proximity, to one another. In these situations, a slight alignment error in one or both polylines (as compared to “real world” conditions) could cause GIS to identify an intersection between road and stream polylines where none actually existed. Conversely, GIS could identify an intersection in error if the distance between the road and stream polylines was less than the tolerance level setting used for the ArcGIS intersect analysis (e.g., if the tolerance level for the ArcGIS intersect analysis is set at one meter and the polylines are less than one meter apart, the application would identify a crossing). In either of these circumstances, GIS could identify a crossing where none occurred.

We visited 853 of the 1,526 GIS-identified crossings during field work for this report. In addition, we collected information on 20 crossings not identified by GIS, but which appeared notable to field crews when observed in the field. Therefore, we surveyed a total of 873 crossings for this report. We identified 658 NFC crossings (465 culverts, 190 bridges, two fords, and one hatchery diversion structure) and 215 Fish Culverts: 21 (10 percent) were not barriers to juvenile fish passage (Green), 36 (17 percent) were partial barriers to juvenile fish passage (Gray) and 156 (73 percent) were complete barriers to juvenile fish passage (Red). We lacked sufficient information for two culverts to determine a barrier rating (2 unknown – 1 percent).

The sections that follow summarize our results and provide detailed information on the 215 fish culverts we surveyed (including maps and photos) and replacement prioritization recommendations for each basin in the Tillamook Bay Watershed.

#### **3.1. Prioritization Analysis**

As noted above, a majority of culverts included in this report were rated as complete barriers to fish passage. In addition, most culverts in this report also were on streams that should be accessible to anadromous fishes (if not for these anthropogenic barriers). As a result, the variables that most affected our prioritization rankings were habitat quantity and habitat quality.

---

<sup>9</sup> GIS-identified crossings numbers 453 and 454 turned out to be a single long crossing that passed under several roads and city lots before terminating at Tillamook Bay. The number of culverts reported from this point forward treats these as a single crossing.

In general, culverts ranked as High Priority affected a considerable amount of potentially suitable habitat and/or affected relatively high quality habitats. Medium Priority culverts typically impeded passage to lesser amounts of potentially suitable habitat or somewhat lower quality habitats than those ranked as High Priority. Culverts ranked as Low Priority generally affected only small amounts of habitat and often these habitats were of relatively low quality. When using this report as a guide to identify and plan potential culvert replacement projects, culverts with higher priority ratings should take precedence over lower ranked culverts whenever possible.

We feel it is important to stress that although we rank many culverts as Low Priority for replacement in the following sections, this does not imply that these culverts are unimportant and should not be targeted for replacement. On the contrary, figures 2-7 graphically demonstrate that most streams in the Watershed are not fish-bearing. As a result, all anthropogenic barriers on fish-bearing streams are important with respect to the conservation and long-term viability of native fish populations in the Watershed. However, under most circumstances, culverts receiving Low Priority scores should be targeted for replacement to improve fish passage only after higher ranked culverts have been replaced.

We also include information below on several culverts that at the time of our surveys did not appear to be barriers to fish passage (Barrier Severity Rating = Not a Barrier). Based on their overall prioritization model scores, several of these culverts ranked as High or Medium Priority (despite scoring very low in one of the model parameters). These culverts occurred on streams with large amounts of upstream habitat and/or high-quality habitats and occupied by multiple anadromous species. Although these culverts didn't appear to impede upstream passage at the time of our survey, this may not always be the case. Culverts wear out and stream conditions change, so we recommend regular monitoring visits to verify that these pipes continue to allow access to the streams systems on which they occur.

As noted earlier, we implemented our prioritization process basin-by-basin to facilitate its use by end users and minimize potential bias. The following paragraphs summarize our findings for each basin.

*Kilchis River Basin* - We surveyed 24 fish culverts in the Kilchis River Basin (Table 3). These crossings affected a total of approximately 12.4 miles of upstream habitats (Table 9). There were 10 High Priority culverts in this basin. We rated four culverts in the Kilchis Basin as Medium Priority. Six culverts in this basin received scores that placed them in the Low Priority range. In addition, four culverts in this basin received scores that would have placed them in the Low Priority range, but these did not appear to be barriers to fish passage at the time of our survey.

*Miami River Basin* - We surveyed 21 fish culverts in the Miami River Basin (Table 4). These crossings affected a total of approximately 13.8 miles of upstream habitats (Table 9). There were seven High Priority culverts in this basin. We rated six culverts in the Miami Basin as Medium Priority. Six culverts in this basin received scores that placed them in the Low Priority range. In addition, two culverts in this basin received scores that would have placed them in the Low Priority range, but these did not appear to be barriers to fish passage at the time of our survey.

*Tillamook Bay Tributaries* - We surveyed 35 fish culverts on streams that outlet directly into Tillamook Bay or Cape Meares Lake (Table 5). These crossings affected a total of approximately 13.8 miles of upstream habitats (Table 9). There were 13 High Priority culverts on these streams. Notably, 10 of these 13 crossings occur on two streams in the Bay City area: Patterson Creek and Doty Creek. We rated 13

culverts on Tillamook Bay tributaries as Medium Priority. Nine culverts in this basin received scores that placed them in the Low Priority range.

*Tillamook River Basin* - We surveyed 15 fish culverts in the Tillamook River Basin (Table 6). These crossings affected a total of approximately 35.6 miles of upstream habitats (Table 9). There were five High Priority culverts in this basin. We rated three culverts in the Tillamook Basin as Medium Priority. Two culverts in this basin received Low Priority ratings. Additionally, we surveyed two culverts in this basin that did not appear to be barriers to fish passage at the time of our survey, but received scores that would have placed them in the High Priority range (due primarily to the quality and quantity of upstream habitats). There were three similar culverts that received scores that would have placed them in the Medium Priority range.

*Trask River Basin* - We surveyed 64 fish culverts in the Trask River Basin (Table 7). These crossings affected a total of approximately 35.8 miles of upstream habitats (Table 9). There were 17 High Priority culverts in this basin. We rated 11 culverts in the Trask Basin as Medium Priority. Thirty (30) culverts in this basin received Low Priority ratings. Additionally, we surveyed one culvert in this basin that did not appear to be a barrier to fish passage at the time of our survey, but received a score that would have placed it in the High Priority range (due primarily to the quality and quantity of upstream habitats). There were three similar culverts that received scores that would have placed them in the Medium Priority range and two that scored in the Low Priority range.

*Wilson River Basin* - We surveyed 56 fish culverts in the Wilson River Basin (Table 8). These crossings affected a total of approximately 30.9 miles of upstream habitats (Table 9). There were 12 High Priority culverts in this basin. We rated 10 culverts in the Wilson Basin as Medium Priority. Twenty-eight (28) culverts in this basin received Low Priority ratings. Additionally, we surveyed one culvert in this basin that did not appear to be a barrier to fish passage at the time of our survey, but received a score that would have placed it in the Medium Priority range (due primarily to the quality and quantity of upstream habitats). There are three similar culverts that received scores that would have placed them in the Low Priority range. Finally, two culverts in this basin were on public roads, but we were unable to collect any data on them because we did not have access to the adjacent private property. As a result, we were unable to calculate a prioritization score for these culverts.

Table 9 summarizes priority rankings and total miles of affected upstream habitat for each basin. It also includes the sum total of upstream habitat in the Tillamook Bay Watershed affected by the 215 fish culverts reported on in this document.

Table 3. Prioritization table for Kilchis Basin.

| Crossing ID | Watershed | Stream Name                      | Road Name            | Easting | Northing | Barrel Shape | Length (feet) | Width (inches) | Overall Condition | Culvert Slope (%) | Perch Height (feet) | Barrier Rating | Upstream Habitat (miles) | Prioritization Model Score | Priority |
|-------------|-----------|----------------------------------|----------------------|---------|----------|--------------|---------------|----------------|-------------------|-------------------|---------------------|----------------|--------------------------|----------------------------|----------|
| 649         | Kilchis   | Murphy Creek                     | Curl Road            | 434654  | 5039811  | Circular     | 40            | 48             | Fair              | -0.4              | none                | Gray           | 2.0                      | 11                         | H        |
| 640         | Kilchis   | Murphy Creek                     | Kilchis River Road   | 434871  | 5040218  | Circular     | 40            | 66             | Fair              | 1.6               | none                | Gray           | 1.7                      | 11                         | H        |
| 663         | Kilchis   | Unnamed trib, Kilchis River      | Curl Road            | 435082  | 5039482  | Circular     | 38            | 48             | Fair              | 1.4               | none                | Gray           | 1.8                      | 11                         | H        |
| 262         | Kilchis   | Whitney Creek                    | Kilchis Forest Road  | 440298  | 5049327  | Circular     | 100           | 84             | Poor              | 7.0               | 4.5                 | Red            | 1.1                      | 11                         | H        |
| 603         | Kilchis   | Mapes Creek                      | Kilchis River Road   | 435239  | 5041132  | Circular     | 50            | 54             | Poor              | 2.5               | none                | Red            | 0.7                      | 10                         | H        |
| 591         | Kilchis   | Myrtle Creek                     | Kilchis River Road   | 436198  | 5041562  | Circular     | 41            | 66             | Poor              | 3.3               | 3.7                 | Red            | 1.0                      | 10                         | H        |
| 629         | Kilchis   | Vaughn Creek                     | Doughty Road         | 433319  | 5040431  | Circular     | 35            | 29             | Poor              | 1.9               | 0.1                 | Red            | 0.9                      | 10                         | H        |
| 620         | Kilchis   | Vaughn Creek                     | Private Drive        | 433396  | 5040789  | Circular     | 30            | 48             | Fair              | 1.9               | 0.7                 | Red            | 0.7                      | 10                         | H        |
| 608         | Kilchis   | Vaughn Creek                     | Pike Road            | 433409  | 5040853  | Circular     | 34            | 48             | Fair              | 5.9               | 0.8                 | Red            | 0.6                      | 10                         | H        |
| 621         | Kilchis   | Vaughn Creek                     | Private Drive        | 433393  | 5040779  | Pipe Arch    | 23            | 74             | Fair              | 1.7               | 0.4                 | Red            | 0.7                      | 10                         | H        |
| 327         | Kilchis   | Blue Star Creek                  | Kilchis Forest Road  | 438990  | 5048635  | Circular     | 100           | 60             | Fair              | 4.0               | 2.5                 | Red            | 0.5                      | 9                          | M        |
| 472         | Kilchis   | Un. trib, Little S.F. Kilchis R. | Unnamed              | 441782  | 5045388  | Pipe Arch    | 60            | 156            | Fair              | 7.1               | 7.1                 | Red            | 0.6                      | 9                          | M        |
| 674         | Kilchis   | Unnamed trib, Coal Creek         | Private Drive        | 435604  | 5039169  | Circular     | 40            | 30             | Poor              | 5.5               | 4.5                 | Red            | 0.2                      | 9                          | M        |
| 181         | Kilchis   | unnamed trib, N. Fk. Kilchis R.  | Kilchis River Road   | 448643  | 5050834  | Circular     | 50.5          | 66             | Good              | 0.1               | 0.1                 | Red            | 0.5                      | 9                          | M        |
| 292         | Kilchis   | Aiken Creek                      | Tilden Bluffs Road   | 438574  | 5048715  | Circular     | 54            | 66             | Poor              | 1.9               | 6.2                 | Red            | 0.1                      | 8                          | L        |
| 673         | Kilchis   | Hathaway Slough                  | Alderbrook Loop Road | 433617  | 5039600  | Circular     | 38            | 24             | Poor              | 1.0               | 0.1                 | Red            | 0.3                      | 8                          | L        |
| 573         | Kilchis   | Tank Creek                       | Kilchis Forest Road  | 438509  | 5041958  | Circular     | 69            | 30             | Fair              | 5.6               | 3.1                 | Red            | 0.1                      | 8                          | L        |
| 589         | Kilchis   | Thomas Creek                     | Kilchis River Road   | 437077  | 5041645  | Circular     | 43            | 48             | Poor              | 1.8               | 3.4                 | Red            | 0.5                      | 8                          | L        |
| 120         | Kilchis   | Unnamed trib, Schroeder Ck       | Miami Divide Road    | 444731  | 5052521  | Circular     | 46            | 48             | Fair              | 6.8               | 9.8                 | Red            | 0.3                      | 8                          | L        |
| 329         | Kilchis   | White Star Creek                 | Kilchis Forest Road  | 439526  | 5048697  | Circular     | 65            | 66             | Poor              | 3.2               | 6.7                 | Red            | 0.5                      | 8                          | L        |
| 658         | Kilchis   | Vaughn Creek                     | Alderbrook Loop Road | 433158  | 5039725  | Box          | 35            | 100            | Fair              | 0.5               | 0.2                 | Green          | 1.4                      | 8                          | N/A      |
| 514         | Kilchis   | Unnamed trib, Sam Downs Ck       | Sans Down Road       | 444479  | 5044396  | Pipe Arch    | 95            | 144            | Good              | 6.7               | none                | Green          | 0.4                      | 7                          | N/A      |
| 505         | Kilchis   | Unnamed trib, Sam Downs Ck       | Sam Downs Road       | 444916  | 5044416  | Pipe Arch    | 82            | 144            | Fair              | 4.9               | none                | Green          | 0.4                      | 7                          | N/A      |
| 510         | Kilchis   | Sam Downs Creek                  | Sam Down Road        | 445122  | 5044237  | Pipe Arch    | 52            | 96             | Good              | 6.7               | none                | Green          | 0.1                      | 6                          | N/A      |

Table 4. Prioritization table for Miami Basin.

| Crossing |       | ID                         | Watershed | Stream Name           | Road Name | Easting | Northing  | Barrel Shape | Length (feet) | Width (inches) | Overall Condition | Culvert Slope (%) | Perch Height (feet) | Barrier Rating | Upstream Habitat (miles) | Prioritization Model Score | Priority |
|----------|-------|----------------------------|-----------|-----------------------|-----------|---------|-----------|--------------|---------------|----------------|-------------------|-------------------|---------------------|----------------|--------------------------|----------------------------|----------|
|          |       |                            |           |                       |           |         |           |              |               |                |                   |                   |                     |                |                          |                            |          |
| 462      | Miami | Illingsworth Creek         |           | Ekroth Road           | 431174    | 5045718 | Pipe Arch | 37           | 72            | Fair           | 0.1               | none              | Gray                | 1.3            | 12                       | H                          |          |
| 189      | Miami | Peterson Creek             |           | Miami Foley Road      | 431586    | 5050520 | Circular  | 46           | 96            | Poor           | 1.0               | 0.2               | Gray                | 6.2            | 12                       | H                          |          |
| 138      | Miami | Prouty Creek               |           | Miami Forest River Rd | 433364    | 5052149 | Pipe Arch | 45           | 110           | Fair           | 3.8               | 0.2               | Red                 | 1.1            | 12                       | H                          |          |
| 448      | Miami | Hobson Creek               |           | Hobson Creek Road     | 430234    | 5046127 | Circular  | 27           | 42            | Poor           | 2.7               | 0.3               | Red                 | 0.8            | 10                       | H                          |          |
| 432      | Miami | Hobson Creek               |           | Hobson Creek Road     | 430115    | 5046264 | Circular  | 24           | 40            | Poor           | 1.3               | 3.6               | Red                 | 0.7            | 10                       | H                          |          |
| 352      | Miami | Waldron Creek              |           | Miami Foley Road      | 431665    | 5048197 | Circular  | 52           | 36            | Fair           | 2.5               | none              | Red                 | 0.7            | 10                       | H                          |          |
| 320      | Miami | Minich Creek               |           | Minich Creek Road     | 431133    | 5048601 | Circular  | 68           | 18            | Poor           | 7.0               | 6.8               | Red                 | 0.6            | 10                       | H                          |          |
| 450      | Miami | Hobson Creek               |           | Miami Foley Road      | 430417    | 5045916 | Pipe Arch | 140          | 78            | Unk            | 4.2               | none              | Gray                | 1.0            | 9                        | M                          |          |
| 449      | Miami | Hobson Creek               |           | Private Drive         | 430308    | 5045955 | Circular  | 26           | 36            | Poor           | -1.0              | none              | Gray                | 0.9            | 9                        | M                          |          |
| 444      | Miami | Struby Creek               |           | Miami Foley Road      | 430542    | 5045965 | Circular  | 43           | 24            | Poor           | 4.6               | none              | Red                 | 0.5            | 9                        | M                          |          |
| 273      | Miami | Unnamed trib, Minich Creek |           | Minich Creek Road     | 430996    | 5048047 | Circular  | 61           | 24            | Fair           | 7.0               | 1.8               | Red                 | 0.2            | 9                        | M                          |          |
| 278      | Miami | Unnamed trib, Minich Creek |           | Minich Creek Road     | 430917    | 5048132 | Pipe Arch | 75           | 60            | Poor           | 4.0               | 3.0               | Red                 | 0.3            | 9                        | M                          |          |
| 126      | Miami | Carver Creek               |           | Miami Foley Road      | 433224    | 5052341 | Circular  | 91           | 36            | Poor           | 3.1               | 2.2               | Red                 | 0.2            | 9                        | M                          |          |
| 230      | Miami | Unnamed trib, Miami River  |           | Private Drive         | 432506    | 5049559 | Circular  | 20           | 36            | Poor           | 0.1               | none              | Gray                | 0.6            | 8                        | L                          |          |
| 225      | Miami | Unnamed trib, Miami River  |           | New Miami River Rd    | 432423    | 5049870 | Circular  | 93           | 48            | Poor           | 4.7               | 0.9               | Red                 | 0.2            | 8                        | L                          |          |
| 115      | Miami | Unnamed trib, Miami River  |           | Miami Forest River Rd | 436328    | 5052920 | Circular  | 30           | 36            | Fair           | 4.4               | 1.6               | Red                 | 0.1            | 8                        | L                          |          |
| 84       | Miami | Unnamed trib, Miami River  |           | Miami River Forest Rd | 439281    | 5054779 | Pipe Arch | 55           | 120           | Fair           | 3.6               | 10.3              | Red                 | 0.2            | 8                        | L                          |          |
| 5101     | Miami | Unnamed trib, Miami River  |           | Miami River Forest Rd | 439759    | 5054992 | Circular  | 42           | 60            | Fair           | 1.8               | 7.2               | Red                 | 0.1            | 8                        | L                          |          |
| 87       | Miami | Unnamed trib, Miami River  |           | Miami River Forest Rd | 440590    | 5054528 | Pipe Arch | 61           | 104           | Good           | 3.3               | 0.4               | Red                 | 0.1            | 8                        | L                          |          |
| 279      | Miami | Unnamed trib, Minich Creek |           | Minich Creek Road     | 431186    | 5048972 | Pipe Arch | 60           | 97            | Fair           | 2.0               | none              | Green               | 0.6            | 8                        | N/A                        |          |
| 93       | Miami | Unnamed trib, Miami River  |           | Miami River Forest Rd | 438027    | 5054143 | Pipe Arch | 55           | 120           | Good           | 4.5               | none              | Green               | 0.2            | 6                        | N/A                        |          |

Table 5. Prioritization table for Tillamook Bay tributaries.

| Crossing ID | Watershed       | Stream Name                   | Road Name            | Easting | Northing | Barrel Shape | Length (feet) | Width (inches) | Overall Condition | Culvert Slope (%) | Perch Height (feet) | Barrier Rating | Upstream Habitat (miles) | Prioritization Model Score | Priority |
|-------------|-----------------|-------------------------------|----------------------|---------|----------|--------------|---------------|----------------|-------------------|-------------------|---------------------|----------------|--------------------------|----------------------------|----------|
| 647         | Till. Bay       | Doty Creek                    | Highway 101          | 431728  | 5039890  | Pipe Arch    | 75            | 66             | Fair              | 0.7               | 0.5                 | Red            | 1.7                      | 12                         | H        |
| 578         | Till. Bay       | Patterson Creek               | 5th Street           | 430568  | 5041806  | Box          | 71            | 96             | Fair              | 0.5               | 1.8                 | Red            | 3.6                      | 12                         | H        |
| 575         | Till. Bay       | Patterson Creek               | Unnamed              | 430727  | 5041881  | Circular     | 36            | 60             | Critical          | 3.4               | 0.8                 | Red            | 2.3                      | 12                         | H        |
| 5555        | Till. Bay       | Patterson Creek               | 8th Street           | 430799  | 5041890  | Circular     | 41            | 56             | Critical          | -0.2              | none                | Red            | 2.3                      | 12                         | H        |
| 572         | Till. Bay       | Patterson Creek               | 9th Street           | 430901  | 5041865  | Pipe Arch    | 42            | 48             | Fair              | unk               | unk                 | Red            | 2.2                      | 12                         | H        |
| 636         | Till. Bay       | Doty Creek                    | Vaughn Road          | 432285  | 5040153  | Circular     | 37            | 36             | Fair              | 0.3               | 0.1                 | Red            | 1.2                      | 11                         | H        |
| 581         | Till. Bay       | Patterson Creek               | Highway 101          | 430242  | 5041650  | Box          | 105           | 96             | Fair              | 0.2               | none                | Gray           | 3.8                      | 11                         | H        |
| 579         | Till. Bay       | Patterson Creek               | 4th Street           | 430484  | 5041795  | Circular     | 97            | 72             | Fair              | 1.6               | none                | Gray           | 3.7                      | 11                         | H        |
| 637         | Till. Bay       | Doty Creek                    | Alderbrook Loop Road | 432147  | 5040015  | Circular     | 41            | 36             | Fair              | 0.1               | 0.1                 | Gray           | 1.4                      | 10                         | H        |
| 622         | Till. Bay       | Doty Creek                    | Private Drive        | 432654  | 5040550  | Circular     | 19            | 45             | Poor              | 8.0               | 0.6                 | Red            | 0.8                      | 10                         | H        |
| 689         | Till. Bay       | Flower Pot Creek              | Bayocean Road        | 427301  | 5038583  | Circular     | 56            | 48             | Fair              | 0.7               | unk                 | Gray           | 1.4                      | 10                         | H        |
| 441         | Till. Bay       | Smith Creek                   | Highway 101          | 426950  | 5046015  | Box          | 81            | 48             | Poor              | 1.0               | 7.7                 | Red            | 1.0                      | 10                         | H        |
| 440         | Till. Bay       | Smith Creek                   | Harbor View Drive    | 427105  | 5046081  | Circular     | 52            | 56             | Critical          | 11.9              | 1.9                 | Red            | 0.9                      | 10                         | H        |
| 686         | Cape Meares Lk. | Coleman Creek                 | Pacific Avenue       | 425312  | 5038726  | Circular     | 39            | 36             | Fair              | 3.1               | 2.1                 | Red            | 0.7                      | 9                          | M        |
| 613         | Till. Bay       | Doty Creek                    | Doughty Road         | 432729  | 5040868  | Circular     | 36            | 46             | Fair              | -1.1              | none                | Gray           | 0.7                      | 9                          | M        |
| 605         | Till. Bay       | Doty Creek                    | Private Drive        | 432768  | 5041048  | Circular     | 31            | 48             | Fair              | 3.4               | none                | Red            | 0.5                      | 9                          | M        |
| 599         | Till. Bay       | Doty Creek                    | Timberline Drive     | 432833  | 5041204  | Circular     | 40            | 48             | Good              | 1.2               | 0.9                 | Red            | 0.4                      | 9                          | M        |
| 593         | Till. Bay       | Doty Creek                    | Private Drive        | 432915  | 5041390  | Circular     | 44            | 24             | Fair              | 6.3               | 4.2                 | Red            | 0.3                      | 9                          | M        |
| 476         | Till. Bay       | Electric Creek                | Highway 101          | 430186  | 5045387  | Circular     | ~160          | 48             | Critical          | variable          | none                | Red            | 1.0                      | 9                          | M        |
| 559         | Till. Bay       | Larson Creek                  | Old Bay City Road    | 430546  | 5042675  | Circular     | 55            | 36             | Poor              | 1.8               | 1.5                 | Red            | 0.4                      | 9                          | M        |
| 542         | Till. Bay       | Patterson Creek               | Unnamed              | 431891  | 5042999  | Circular     | 43            | 36             | Poor              | 5.0               | 1.6                 | Red            | 0.5                      | 9                          | M        |
| 5304        | Till. Bay       | School Creek                  | Parking Lot          | 429112  | 5045771  | Circular     | ~125          | 36             | Poor              | 1.0               | none                | Red            | 0.7                      | 9                          | M        |
| 453/454     | Till. Bay       | School Creek                  | Several in Garibaldi | 429205  | 5045779  | Circular     | ~700          | 36             | Unk               | 2.0               | none                | Red            | 0.9                      | 9                          | M        |
| 413         | Till. Bay       | Smith Creek                   | Barview Forest Rd    | 427659  | 5046723  | Circular     | 45            | 36             | Poor              | 3.0               | 7.5                 | Red            | 0.3                      | 9                          | M        |
| 702         | Till. Bay       | Unnamed trib, McCoy Cove      | Bayocean Road        | 428043  | 5038123  | Circular     | 48            | 48             | Fair              | 0.2               | unk                 | Gray           | 0.9                      | 9                          | M        |
| 543         | Till. Bay       | Unnamed trib, Patterson Creek | Unnamed              | 431979  | 5042920  | Circular     | 41            | 42             | Poor              | 4.2               | 3.1                 | Red            | 0.4                      | 9                          | M        |
| 675         | Cape Meares Lk. | Coleman Creek                 | 5th Street           | 425267  | 5039131  | Circular     | 50            | 42             | Fair              | 6.1               | unk                 | Gray           | 1.0                      | 8                          | L        |
| 778         | Till. Bay       | Dick Creek                    | Bayocean Road        | 429330  | 5036881  | Pipe Arch    | 44            | 72             | Poor              | 2.1               | unk                 | Gray           | 0.5                      | 8                          | L        |
| 528         | Till. Bay       | Patterson Creek               | Patterson Creek Road | 432101  | 5043624  | Circular     | 74            | 36             | Poor              | 2.0               | 2.2                 | Red            | 0.1                      | 8                          | L        |
| 452         | Till. Bay       | School Creek                  | Driftwood Avenue     | 429064  | 5045799  | Pipe Arch    | 82            | 96             | Fair              | 3.0               | none                | Gray           | 0.8                      | 8                          | L        |
| 757         | Till. Bay       | Unnamed trib, Bock Point      | Bayocean Road        | 429068  | 5037210  | Circular     | 59            | 36             | Fair              | 0.0               | unk                 | Gray           | 0.3                      | 8                          | L        |
| 725         | Till. Bay       | Unnamed trib, Boulder Point   | Bayocean Road        | 428308  | 5037848  | Circular     | 52            | 72             | Poor              | 2.8               | unk                 | Gray           | 0.4                      | 8                          | L        |
| 5302        | Till. Bay       | Whitney Creek                 | Highway 101          | 429847  | 5045882  | Circular     | 55            | 36             | Poor              | 1.0               | none                | Red            | 0.5                      | 8                          | L        |
| 5301        | Till. Bay       | Whitney Creek                 | Arizona Way          | 429817  | 5045895  | Pipe Arch    | 61            | 42             | Fair              | 1.0               | none                | Gray           | 0.4                      | 8                          | L        |
| 5303        | Till. Bay       | Whitney Creek                 | Martin Smith Lane    | 429760  | 5045944  | Circular     | 55            | 36             | Critical          | 3.5               | 0.7                 | Red            | 0.4                      | 8                          | L        |

Table 6. Prioritization table for Tillamook Basin.

| Crossing ID | Watershed | Stream Name                   | Road Name         | Easting | Northing | Barrel Shape | Length (feet) | Width (inches) | Overall Condition | Culvert Slope (%) | Perch Height (feet) | Barrier Rating | Upstream Habitat (miles) | Prioritization Model Score | Priority |
|-------------|-----------|-------------------------------|-------------------|---------|----------|--------------|---------------|----------------|-------------------|-------------------|---------------------|----------------|--------------------------|----------------------------|----------|
| 1234        | Tillamook | Killam Creek                  | Highway 101       | 437142  | 5022712  | Box          | 109           | 96             | Fair              | 0.4               | 4.4                 | Red            | 8.4                      | 13                         | H        |
| 1381        | Tillamook | Munson Creek                  | Highway 101       | 437008  | 5024593  | Box          | 69            | 144            | Fair              | 0.1               | 1.0                 | Red            | 4.3                      | 13                         | H        |
| 908         | Tillamook | Esther Creek                  | Highway 131       | 431197  | 5033781  | Circular     | 155           | 66             | Poor              | 1.0               | none                | Gray           | 3.9                      | 12                         | H        |
| 931         | Tillamook | Esther Creek                  | Tomlinson Road    | 430928  | 5033563  | Circular     | 25            | 60             | Poor              | 1.2               | 0.1                 | Gray           | 2.9                      | 12                         | H        |
| 1438        | Tillamook | Unnamed trib, Tillamook River | Private Drive     | 434395  | 5022847  | Circular     | 17            | 60             | Critical          | 1.6               | none                | Gray           | 2.4                      | 12                         | H        |
| 1330        | Tillamook | Simmons Creek                 | Highway 101       | 437043  | 5025427  | Open Arch    | 113           | 240            | Fair              | 0.4               | 0.2                 | Green          | 6.5                      | 11                         | N/A      |
| 1457        | Tillamook | Mills Creek                   | Highway 101       | 436581  | 5022611  | Box          | 134           | 120            | Fair              | 0.2               | none                | Green          | 2.3                      | 11                         | N/A      |
| 893         | Tillamook | Tomlinson Creek               | Private Drive     | 430943  | 5033987  | Circular     | 19            | 60             | Critical          | -1.2              | 0.4                 | Red            | 0.5                      | 10                         | M        |
| 932         | Tillamook | Unnamed trib, Esther Creek    | Private Drive     | 430845  | 5033558  | Circular     | 34            | 30             | Fair              | -0.4              | none                | Gray           | 0.8                      | 10                         | M        |
| 6666        | Tillamook | Unnamed trib, Tillamook River | Highway 101       | 435587  | 5028596  | Circular     | 109           | 56             | Fair              | 3.5               | none                | Gray           | 1.6                      | 10                         | M        |
| 1102        | Tillamook | Unnamed trib, Beaver Creek    | Private Drive     | 431060  | 5029663  | Circular     | 40            | 90             | Poor              | -1.2              | none                | Green          | 1.5                      | 10                         | N/A      |
| 1404        | Tillamook | Unnamed trib, Munson Creek    | Munson Creek Road | 438611  | 5023756  | Open Arch    | 61            | 156            | Fair              | 4.2               | 0.2                 | Green          | 1.4                      | 10                         | N/A      |
| 1401        | Tillamook | Pleasant Valley Creek         | Highway 101       | 437013  | 5023817  | Box          | 80            | 96             | Fair              | 0.5               | 0.3                 | Green          | 1.1                      | 10                         | N/A      |
| 848         | Tillamook | Memaloose Creek               | Bayocean Road     | 430623  | 5035363  | Pipe Arch    | 48            | 66             | Poor              | 1.2               | 0.3                 | Red            | 0.5                      | 9                          | L        |
| 985         | Tillamook | Unnamed trib, Fagan Creek     | Highway 131       | 429888  | 5032065  | Circular     | 104           | 48             | Fair              | 3.9               | 0.3                 | Red            | 0.3                      | 9                          | L        |

Table 7. Prioritization table for Trask Basin.

| Crossing ID | Watershed | Stream Name                        | Road Name             | Easting | Northing | Barrel Shape | Length (feet) | Width (inches) | Overall Condition | Culvert Slope (%) | Perch Height (feet) | Barrier Rating | Upstream Habitat (miles) | Prioritization Model Score | Priority |
|-------------|-----------|------------------------------------|-----------------------|---------|----------|--------------|---------------|----------------|-------------------|-------------------|---------------------|----------------|--------------------------|----------------------------|----------|
| 1127        | Trask     | Mill Creek                         | Private Drive         | 440016  | 5029440  | Circular     | 22            | 42             | Poor              | 1.5               | 0.7                 | Red            | 1.8                      | 13                         | H        |
| 1106        | Trask     | Mill Creek                         | Brickyard Road        | 439145  | 5029501  | Circular     | 56            | 32             | Poor              | 1.1               | unk                 | Red            | 2.4                      | 12                         | H        |
| 1107        | Trask     | Mill Creek                         | Private Drive         | 439439  | 5029531  | Circular     | 26            | 48             | Poor              | 0.1               | 1.2                 | Red            | 2.2                      | 12                         | H        |
| 1105        | Trask     | Mill Creek                         | Private Drive         | 439636  | 5029535  | Circular     | 27            | 29             | Poor              | 1.0               | 0.4                 | Red            | 2.1                      | 12                         | H        |
| 987         | Trask     | Green Creek                        | Trask River Road      | 440497  | 5032236  | Circular     | 50            | 53             | Poor              | 5.6               | 1.0                 | Red            | 1.7                      | 12                         | H        |
| 1128        | Trask     | Mill Creek                         | Private Drive         | 439929  | 5029449  | Circular     | 27            | 37             | Poor              | 2.4               | 0.8                 | Red            | 1.9                      | 12                         | H        |
| 902         | Trask     | Samson Creek                       | Trask River Road      | 449229  | 5033876  | Circular     | 46            | 84             | Poor              | 5.5               | 1.1                 | Red            | 1.5                      | 12                         | H        |
| 1094        | Trask     | Unnamed trib, Mill Creek           | Brickyard Road        | 438771  | 5029891  | Circular     | 67            | 48             | Poor              | 0.9               | 0.1                 | Red            | 3.5                      | 12                         | H        |
| 1120        | Trask     | Edwards Creek                      | Edwards Creek Road    | 450857  | 5029214  | Pipe Arch    | 45            | 96             | Fair              | 0.1               | 3.8                 | Red            | 0.8                      | 11                         | H        |
| 942         | Trask     | Holden Creek                       | Lumber mill road      | 434837  | 5033295  | Circular     | 199           | 78             | Poor              | unk               | unk                 | Red            | 3.2                      | 11                         | H        |
| 945         | Trask     | Holden Creek                       | Lumber mill road      | 435013  | 5033315  | Circular     | 41            | 60             | Critical          | 1.5               | 0.6                 | Red            | 3.1                      | 11                         | H        |
| 948         | Trask     | Holden Creek                       | Murray Way            | 435550  | 5033273  | Circular     | 20            | 48             | Poor              | 5.8               | none                | Red            | 2.7                      | 11                         | H        |
| 1342        | Trask     | Pothole Creek                      | Murphy Camp Road      | 459224  | 5024799  | Circular     | 53            | 60             | Fair              | 6.6               | 1.3                 | Red            | 0.4                      | 11                         | H        |
| 1134        | Trask     | Unnamed trib, Mill Creek           | Magnolia Drive        | 438891  | 5028837  | Pipe Arch    | 37            | 144            | Fair              | 0.3               | 0.3                 | Gray           | 3.8                      | 11                         | H        |
| 1137        | Trask     | Unnamed trib, Mill Creek           | Brickyard Road        | 439127  | 5028736  | Circular     | 43            | 36             | Poor              | 0.9               | 0.4                 | Red            | 1.9                      | 11                         | H        |
| 1136        | Trask     | Unnamed trib, Mill Creek           | Private Drive         | 439203  | 5028756  | Circular     | 22            | 36             | Fair              | 2.3               | 0.2                 | Red            | 1.8                      | 11                         | H        |
| 1402        | Trask     | Unnamed trib, S. F. Trask River    | South Fork Trask Road | 452161  | 5023649  | Circular     | 45            | 48             | Poor              | 6.2               | none                | Red            | 0.7                      | 11                         | H        |
| 1476        | Trask     | Headquarters Camp Creek            | East Fork Road        | 457836  | 5022036  | Open Arch    | 50            | 114            | Fair              | 0.0               | none                | Green          | 1.6                      | 11                         | N/A      |
| 1448        | Trask     | Bales Creek                        | East Fork Bypass      | 454053  | 5022706  | Pipe Arch    | 47            | 150            | Fair              | 1.2               | 0.3                 | Gray           | 1.0                      | 10                         | M        |
| 952         | Trask     | Holden Creek                       | Miller Road           | 434445  | 5033277  | Circular     | 95            | 66             | Poor              | unk               | none                | Gray           | 3.4                      | 10                         | M        |
| 946         | Trask     | Holden Creek                       | Evergreen Road        | 435218  | 5033198  | Box          | 39            | 96             | Fair              | 2.4               | 0.3                 | Gray           | 2.9                      | 10                         | M        |
| 947         | Trask     | Holden Creek                       | Marolf Loop Road      | 436344  | 5033372  | Box          | 28            | 78             | Fair              | 0.3               | none                | Gray           | 2.2                      | 10                         | M        |
| 930         | Trask     | Holden Creek                       | McCormick Loop Rd.    | 437353  | 5033678  | Circular     | 46            | 60             | Poor              | 1.7               | 0.1                 | Red            | 1.5                      | 10                         | M        |
| 1099        | Trask     | Unnamed trib, Bark Shanty Ck       | Bark Shanty Road      | 458843  | 5029888  | Circular     | 40            | 66             | Fair              | 9.2               | 1.4                 | Red            | 0.6                      | 10                         | M        |
| 1455        | Trask     | Unnamed trib, E.F. S.F. Trask R.   | Headquarters Grade    | 462635  | 5022586  | Circular     | 45            | 54             | Fair              | 1.4               | 0.9                 | Red            | 0.5                      | 10                         | M        |
| 955         | Trask     | Unnamed trib, Holden Creek         | Private Drive         | 434496  | 5032993  | Circular     | 30            | 36             | Critical          | -1.6              | none                | Red            | 1.1                      | 10                         | M        |
| 918         | Trask     | Unnamed trib, Trask River          | Trask River Road      | 446257  | 5033862  | Circular     | 50            | 66             | Poor              | 6.0               | 5.0                 | Red            | 0.7                      | 10                         | M        |
| 915         | Trask     | Unnamed trib, Trask River          | Trask River Road      | 450088  | 5033724  | Pipe Arch    | 59            | 91             | Fair              | 0.2               | 2.9                 | Red            | 0.8                      | 10                         | M        |
| 864         | Trask     | Unnammed trib, N.F. Trask R.       | N.F. Trask R. Road    | 463625  | 5034818  | Circular     | 60            | 90             | Fair              | 8.4               | 2.4                 | Red            | 0.6                      | 10                         | M        |
| 1058        | Trask     | Unnamed trib, July Creek           | Cruiser Creek Road    | 462266  | 5030364  | Pipe Arch    | 78            | 126            | Fair              | 3.0               | none                | Green          | 1.3                      | 10                         | N/A      |
| 1095        | Trask     | Unnamed trib, Mill Creek           | Private Drive         | 439674  | 5029747  | Pipe Arch    | 44            | 126            | Fair              | 0.1               | none                | Green          | 2.9                      | 10                         | N/A      |
| 1447        | Trask     | East Fork South Fork Trask R.      | Headquarters Grade    | 462642  | 5022621  | Pipe Arch    | 40            | 138            | Poor              | -0.7              | none                | Green          | 0.8                      | 10                         | N/A      |
| 1021        | Trask     | Harenkrat Creek                    | Chance Road           | 442541  | 5031175  | Circular     | 35            | 36             | Poor              | 22.0              | 2.5                 | Red            | 0.1                      | 9                          | L        |
| 1516        | Trask     | Headquarters Camp Creek            | East Fork Road        | 459354  | 5021000  | Circular     | 33            | 48             | Fair              | 2.2               | 1.2                 | Red            | 0.7                      | 9                          | L        |
| 929         | Trask     | Holden Creek                       | Trask River Road      | 438068  | 5033726  | Circular     | 34            | 36             | Fair              | 2.9               | none                | Red            | 1.0                      | 9                          | L        |
| 1059        | Trask     | July Creek                         | July Creek Road       | 461780  | 5030780  | Circular     | 72            | 50             | Fair              | 6.4               | 4.3                 | Red            | 0.7                      | 9                          | L        |
| 1113        | Trask     | M.F. North Fork Trask R.           | Flora Mainline        | 468438  | 5029260  | Circular     | 105           | 64             | Poor              | 7.0               | 1.5                 | Red            | 1.0                      | 9                          | L        |
| 1483        | Trask     | Rock Creek                         | Headquarters Grade    | 461513  | 5021915  | Circular     | 32            | 30             | Poor              | 5.7               | none                | Red            | 1.0                      | 9                          | L        |
| 1453        | Trask     | Unnamed trib, Bales Creek          | East Fork Bypass      | 454482  | 5022650  | Pipe Arch    | 79            | 120            | Fair              | 1.9               | none                | Gray           | 0.1                      | 9                          | L        |
| 1431        | Trask     | Unnamed trib, Boundary Creek       | East Fork Trask       | 457106  | 5023017  | Circular     | 41            | 36             | Fair              | 3.9               | 2.3                 | Red            | 0.3                      | 9                          | L        |
| 1472        | Trask     | Unnamed trib, Headquarters Camp Ck | East Fork Road        | 457721  | 5022175  | Circular     | 50            | 54             | Fair              | 2.3               | 2.3                 | Red            | 0.3                      | 9                          | L        |

Table 7. Prioritization table for Trask Basin.

| Crossing ID | Watershed | Stream Name                      | Road Name             | Easting | Northing | Barrel Shape | Length (feet) | Width (inches) | Overall Condition | Culvert Slope (%) | Perch Height (feet) | Barrier Rating | Upstream Habitat (miles) | Prioritization Model Score | Priority |
|-------------|-----------|----------------------------------|-----------------------|---------|----------|--------------|---------------|----------------|-------------------|-------------------|---------------------|----------------|--------------------------|----------------------------|----------|
| 965         | Trask     | Unnamed trib, M.F. N.F. Trask R. | Unnamed               | 468598  | 5032837  | Circular     | 60            | 36             | Fair              | 5.0               | 6.0                 | Red            | 0.7                      | 9                          | L        |
| 1378        | Trask     | Unnamed trib, S. F. Trask River  | South Fork Trask Road | 452218  | 5024301  | Circular     | 61            | 56             | Fair              | 5.9               | 1.6                 | Red            | 0.2                      | 9                          | L        |
| 1027        | Trask     | Unnamed trib, Trask River        | Long Prairie Road     | 439161  | 5031219  | Circular     | 59            | 54             | Poor              | 0.3               | 0.5                 | Red            | 0.6                      | 9                          | L        |
| 999         | Trask     | Unnamed trib, Trask River        | Trask River Road      | 441421  | 5032051  | Circular     | 80            | 24             | Poor              | 6.2               | 1.5                 | Red            | 0.3                      | 9                          | L        |
| 907         | Trask     | Unnamed trib, Trask River        | Trask River Road      | 448996  | 5033853  | Circular     | 70            | 60             | Poor              | 7.0               | 0.6                 | Red            | 0.6                      | 9                          | L        |
| 889         | Trask     | Burton Creek                     | Trask River Road      | 447331  | 5034084  | Circular     | 57            | 90             | Critical          | 5.5               | unk                 | Red            | 0.1                      | 8                          | L        |
| 1520        | Trask     | Headquarters Camp Creek          | Headquarters Grade    | 459744  | 5020580  | Circular     | 90            | 98             | Fair              | 3.7               | 2.0                 | Red            | 0.4                      | 8                          | L        |
| 1487        | Trask     | Rock Creek                       | Unnamed private road  | 462517  | 5021876  | Circular     | 55            | 30             | Fair              | 5.0               | 1.3                 | Red            | 0.5                      | 8                          | L        |
| 1499        | Trask     | South Fork Rock Creek            | Headquarters Grade    | 460004  | 5021270  | Circular     | 67            | 36             | Poor              | 1.4               | 6.6                 | Red            | 0.1                      | 8                          | L        |
| 1109        | Trask     | Unnamed trib, Cruiser Creek      | Cruiser Creek Road    | 461704  | 5029778  | Circular     | 44            | 48             | Fair              | 4.6               | none                | Red            | 0.3                      | 8                          | L        |
| 1146        | Trask     | Unnamed trib, Mill Creek         | Brickyard Road        | 438824  | 5028627  | Circular     | 46            | 36             | Poor              | 1.2               | none                | Red            | 0.4                      | 8                          | L        |
| 1156        | Trask     | Unnamed trib, Mill Creek         | Brickyard Road        | 438728  | 5028449  | Circular     | 43            | 30             | Poor              | 0.7               | 0.3                 | Red            | 0.2                      | 8                          | L        |
| 5001        | Trask     | Unnamed trib, S. F. Trask River  | South Fork Trask Road | 452240  | 5024299  | Circular     | 61            | 55             | Poor              | 9.9               | 2.7                 | Red            | 0.2                      | 8                          | L        |
| 1039        | Trask     | Unnamed trib, Trask River        | Chance Road           | 439686  | 5031041  | Circular     | 40            | 54             | Fair              | 2.5               | 0.6                 | Red            | 0.2                      | 8                          | L        |
| 925         | Trask     | Unnamed trib, Trask River        | Trask River Road      | 447854  | 5033645  | Circular     | 70            | 36             | Fair              | 7.5               | 2.6                 | Red            | 0.3                      | 8                          | L        |
| 903         | Trask     | Unnamed trib, Trask River        | Trask River Road      | 449111  | 5033866  | Circular     | 56            | 36             | Fair              | 4.9               | 1.9                 | Red            | 0.4                      | 8                          | L        |
| 944         | Trask     | Unnamed trib, Trask River        | Private Drive         | 450089  | 5033396  | Circular     | 30            | 36             | Good              | 4.0               | 3.0                 | Red            | 0.1                      | 8                          | L        |
| 927         | Trask     | Unnamed trib, Trask River        | Trask River Road      | 451247  | 5033597  | Circular     | 44            | 36             | Poor              | 9.2               | 0.6                 | Red            | 0.3                      | 8                          | L        |
| 1010        | Trask     | Unnamed trib, Trask River        | Trask River Road      | 452667  | 5031535  | Circular     | 64            | 48             | Critical          | 3.0               | 4.5                 | Red            | 0.1                      | 8                          | L        |
| 962         | Trask     | Unnammed trib, N.F. Trask R.     | Reiner Road           | 468476  | 5033151  | Circular     | 57            | 30             | Critical          | 6.4               | 9.5                 | Red            | 0.2                      | 8                          | L        |
| 1112        | Trask     | Unnamed trib, M.F. N.F. Trask R. | Unnamed               | 468510  | 5029400  | Circular     | 100           | 42             | Poor              | 12.0              | 3.0                 | Red            | 0.1                      | 7                          | L        |
| 1060        | Trask     | July Creek                       | Cruiser Creek Road    | 462101  | 5030429  | Pipe Arch    | 51            | 120            | Fair              | 7.3               | none                | Green          | 0.4                      | 7                          | N/A      |
| 1068        | Trask     | Whirlwind Creek                  | Cruiser Creek Road    | 461662  | 5030154  | Pipe Arch    | 43            | 120            | Fair              | 3.1               | none                | Green          | 0.3                      | 7                          | N/A      |

Table 8. Prioritization table for Wilson Basin.

| Crossing ID | Watershed | Stream Name                    | Road Name            | Easting | Northing | Barrel Shape | Length (feet) | Width (inches) | Overall Condition | Culvert Slope (%) | Perch Height (feet) | Barrier Rating | Upstream Habitat (miles) | Prioritization Model Score | Priority |
|-------------|-----------|--------------------------------|----------------------|---------|----------|--------------|---------------|----------------|-------------------|-------------------|---------------------|----------------|--------------------------|----------------------------|----------|
| 249         | Wilson    | Deyoe Creek                    | Unnamed              | 471310  | 5049236  | Pipe Arch    | 50            | 76             | Poor              | 0.6               | 0.6                 | Red            | 1.7                      | 13                         | H        |
| 667         | Wilson    | Fox Creek                      | Highway 6            | 452405  | 5039358  | Box          | 94            | 120            | Poor              | 5.2               | 4.0                 | Red            | 2.0                      | 13                         | H        |
| 697         | Wilson    | Zig Zag Creek                  | Highway 6            | 447732  | 5038310  | Box          | 150           | 126            | Poor              | 8.0               | 13.0                | Red            | 1.6                      | 13                         | H        |
| 199         | Wilson    | Dog Creek                      | Highway 6            | 461602  | 5050380  | Box          | 116           | 96             | Fair              | 3.7               | unk                 | Red            | 1.1                      | 12                         | H        |
| 231         | Wilson    | Elliot Creek                   | Univ. Falls Road     | 469275  | 5049565  | Circular     | 80            | 76             | Poor              | 1.0               | 1.5                 | Red            | 3.3                      | 12                         | H        |
| 910         | Wilson    | Hughey Creek                   | Marvin Lane          | 440715  | 5033783  | Pipe Arch    | 45            | 96             | Fair              | 6.7               | none                | Red            | 1.8                      | 12                         | H        |
| 792         | Wilson    | Juno Creek                     | Boquest Road         | 433660  | 5036608  | Circular     | unk           | 48             | Fair              | 6.0               | unk                 | Red            | 2.3                      | 11.5                       | H        |
| 814         | Wilson    | Beaver Creek                   | Sollie Smith Road    | 437528  | 5036405  | Circular     | 104           | 48             | Fair              | 2.6               | none                | Gray           | 1.6                      | 11                         | H        |
| 202         | Wilson    | Lewis Creek                    | Scoggins Creek Road  | 472642  | 5050895  | Pipe Arch    | 54            | 94             | Good              | 1.8               | none                | Gray           | 0.8                      | 11                         | H        |
| 333         | Wilson    | Runyon Creek                   | Highway 6            | 457794  | 5048327  | Circular     | 42            | 51             | Poor              | 1.0               | 8.0                 | Red            | 0.9                      | 11                         | H        |
| 305         | Wilson    | Scotty Creek                   | Highway 6            | 458912  | 5048759  | Circular     | 100           | 42             | Poor              | 5.0               | 1.1                 | Red            | 0.5                      | 11                         | H        |
| 178         | Wilson    | Unnamed trib, Devils Lake Fork | Powerhouse Rd        | 473094  | 5050767  | Circular     | 29            | 36             | Poor              | 2.3               | 1.3                 | Red            | 0.6                      | 11                         | H        |
| 266         | Wilson    | Elliot Creek                   | Unnamed              | 470343  | 5049056  | Pipe Arch    | 66            | 120            | Poor              | 2.7               | 1.1                 | Red            | 1.0                      | 10                         | M        |
| 775         | Wilson    | Hatchery Creek                 | Highway 6            | 444613  | 5036903  | Box          | 75            | 60             | Fair              | 5.0               | unk                 | Red            | 0.8                      | 10                         | M        |
| 901         | Wilson    | Hughey Creek                   | Hughey Lane          | 440230  | 5034296  | Circular     | 70            | 72             | Fair              | 3.5               | none                | Gray           | 2.3                      | 10                         | M        |
| 760         | Wilson    | Jack Creek                     | Highway 6            | 446088  | 5037216  | Box          | 97            | 60             | Poor              | 7.0               | unk                 | Red            | 1.0                      | 10                         | M        |
| 405         | Wilson    | Luebke Creek                   | Highway 6            | 456036  | 5046768  | Circular     | 51            | 54             | Poor              | 10.8              | 1.1                 | Red            | 0.7                      | 10                         | M        |
| 713         | Wilson    | Smith Creek                    | Highway 6            | 446846  | 5037955  | Box          | 143           | 120            | Poor              | 8.0               | 1.5                 | Red            | 0.6                      | 10                         | M        |
| 584         | Wilson    | Stanley Creek                  | Highway 6            | 452383  | 5041793  | Box          | 115           | 60             | Poor              | 12.0              | 4.0                 | Red            | 0.8                      | 10                         | M        |
| 176         | Wilson    | Unnamed trib, Devils Lake Fork | #7 Clyde's Trail     | 473526  | 5050908  | Circular     | 34            | 48             | Critical          | 8.3               | none                | Red            | 0.3                      | 10                         | M        |
| 222         | Wilson    | Unnamed trib, Devils Lake Fork | Scoggins Creek Road  | 474112  | 5049754  | Pipe Arch    | 50            | 108            | Poor              | -0.2              | 2.0                 | Red            | 0.5                      | 10                         | M        |
| 5306        | Wilson    | Yankee Branch                  | Latimer Road         | 436467  | 5036370  | Circular     | 87            | 36             | Fair              | -1.0              | none                | Gray           | 1.1                      | 10                         | M        |
| 781         | Wilson    | Unnamed trib, Juno Creek       | Latimer Road         | 434655  | 5036763  | Circular     | 84            | 108            | Fair              | 2.3               | 0.1                 | Green          | 1.6                      | 10                         | N/A      |
| 877         | Wilson    | Donaldson Creek                | Fairview Road        | 440491  | 5034773  | Circular     | 69            | 36             | Poor              | 4.4               | 2.1                 | Red            | 0.3                      | 9                          | L        |
| 696         | Wilson    | Fern Creek                     | Highway 6            | 447331  | 5038383  | Box          | 100           | 48             | Poor              | 9.3               | 3.5                 | Red            | 0.5                      | 9                          | L        |
| 447         | Wilson    | Hoskins Creek                  | Highway 6            | 455519  | 5045832  | Circular     | 66            | 72             | Fair              | 3.6               | 2.2                 | Red            | 0.1                      | 9                          | L        |
| 755         | Wilson    | Juno Creek                     | Juno Hill Road       | 434841  | 5037351  | Circular     | 50            | 42             | Poor              | 3.2               | 0.1                 | Red            | 0.5                      | 9                          | L        |
| 268         | Wilson    | Moore Creek                    | East Ben Smith Road  | 460473  | 5049046  | Pipe Arch    | 43            | 78             | Poor              | 3.5               | 2.6                 | Red            | 0.2                      | 9                          | L        |
| 693         | Wilson    | Smith Creek                    | Smith Creek Road     | 446299  | 5038612  | Circular     | 27            | 72             | Fair              | 9.3               | 2.7                 | Red            | 0.3                      | 9                          | L        |
| 150         | Wilson    | Unnamed trib, Devils Lake Fork | Powderhouse Loop Rd  | 472570  | 5051758  | Pipe Arch    | 68            | 78             | Good              | 4.7               | 2.4                 | Red            | 0.2                      | 9                          | L        |
| 304         | Wilson    | Unnamed trib, Jones Creek      | Jones Creek Road     | 456150  | 5048626  | Pipe Arch    | 45            | 100            | Fair              | 1.8               | 1.0                 | Red            | 0.4                      | 9                          | L        |
| 780         | Wilson    | Unnamed trib, Juno Creek       | Juno Hill Road       | 434906  | 5036782  | Circular     | 29            | 30             | Critical          | 6.1               | 0.8                 | Red            | 0.9                      | 9                          | L        |
| 300         | Wilson    | Unnamed trib, S.F. Wilson R.   | Prison Camp Road     | 463422  | 5048729  | Pipe Arch    | 43            | 94             | Good              | 4.5               | 2.2                 | Red            | 0.2                      | 9                          | L        |
| 240         | Wilson    | Unnamed trib, Wilson River     | Highway 6            | 460589  | 5049407  | Circular     | 80            | 24             | Poor              | 9.0               | 1.0                 | Red            | 0.6                      | 9                          | L        |
| 227         | Wilson    | Unnamed trib, Wilson River     | Highway 6            | 460951  | 5049662  | Circular     | 61            | 36             | Fair              | 4.3               | 1.8                 | Red            | 0.2                      | 9                          | L        |
| 265         | Wilson    | Elliott Creek                  | Unnamed              | 470043  | 5049124  | Pipe Arch    | 41            | 102            | Good              | 2.6               | 0.2                 | Green          | 1.2                      | 9                          | N/A      |
| 881         | Wilson    | Donaldson Creek                | Private Drive        | 440956  | 5034462  | Circular     | 34            | 18             | Fair              | 4.4               | 5.7                 | Red            | 0.1                      | 8                          | L        |
| 735         | Wilson    | Unnamed trib, Beaver Creek     | Beaver Creek Road    | 437842  | 5037849  | Circular     | 86            | 42             | Poor              | 11.0              | 4.0                 | Red            | 0.1                      | 8                          | L        |
| 388         | Wilson    | Unnamed trib, Ben Smith Creek  | Ben Smith Creek Road | 459298  | 5047224  | Pipe Arch    | 63            | 96             | Good              | 6.3               | none                | Gray           | 0.3                      | 8                          | L        |
| 246         | Wilson    | Unnamed trib, Devils Lake Fork | Unnamed              | 473811  | 5049357  | Circular     | 34            | 18             | Poor              | 4.2               | 2.6                 | Red            | 0.1                      | 8                          | L        |
| 356         | Wilson    | Unnamed trib, S.F. Wilson R.   | C-Line Road          | 465646  | 5048242  | Pipe Arch    | 67            | 126            | Fair              | 9.2               | 4.3                 | Red            | 0.3                      | 8                          | L        |

Table 8. Prioritization table for Wilson Basin.

| Crossing ID | Watershed | Stream Name                      | Road Name            | Easting | Northing | Barrel Shape | Length (feet) | Width (inches) | Overall Condition | Culvert Slope (%) | Perch Height (feet) | Barrier Rating | Upstream Habitat (miles) | Prioritization Model Score | Priority |
|-------------|-----------|----------------------------------|----------------------|---------|----------|--------------|---------------|----------------|-------------------|-------------------|---------------------|----------------|--------------------------|----------------------------|----------|
| 261         | Wilson    | Unnamed trib, S.F. Wilson R.     | Stage Road           | 466347  | 5048623  | Circular     | 67            | 57             | Good              | 6.0               | none                | Red            | 0.1                      | 8                          | L        |
| 803         | Wilson    | Unnamed trib, Wilson River       | Sollie Smith Road    | 439248  | 5036338  | Circular     | 60            | 36             | Fair              | 14.0              | 0.2                 | Red            | 0.5                      | 8                          | L        |
| 788         | Wilson    | Unnamed trib, Wilson River       | Sollie Smith Road    | 439249  | 5036600  | Circular     | 63            | 24             | Poor              | 7.0               | 0.8                 | Red            | 0.3                      | 8                          | L        |
| 722         | Wilson    | Unnamed trib, Wilson River       | Highway 6            | 446487  | 5037891  | Circular     | 50            | 24             | Fair              | 4.8               | none                | Red            | 0.2                      | 8                          | L        |
| 723         | Wilson    | Unnamed trib, Wilson River       | Highway 6            | 450762  | 5037876  | Box          | 39            | 60             | Poor              | 3.5               | 0.2                 | Red            | 0.5                      | 8                          | L        |
| 604         | Wilson    | Unnamed trib, Wilson River       | Highway 6            | 451998  | 5041075  | Circular     | 99            | 60             | Good              | 7.3               | 0.1                 | Red            | 0.1                      | 8                          | L        |
| 798         | Wilson    | Kansas Creek                     | Kansas Creek Road    | 449687  | 5036465  | Pipe Arch    | 71            | 66             | Fair              | 3.1               | 1.6                 | Red            | 0.4                      | 7                          | L        |
| 822         | Wilson    | Kansas Creek                     | Kansas Creek Road    | 449858  | 5036361  | Pipe Arch    | 56            | 55             | Fair              | 9.9               | 1.4                 | Red            | 0.3                      | 7                          | L        |
| 823         | Wilson    | Kansas Creek                     | Kansas Creek Road    | 449997  | 5036035  | Circular     | 79            | 90             | Poor              | 4.2               | 4.1                 | Red            | 0.1                      | 7                          | L        |
| 762         | Wilson    | Unnamed trib, Kansas Creek       | Kansas Creek Road    | 449522  | 5037009  | Circular     | 39            | 30             | Good              | 6.5               | 0.7                 | Red            | 0.1                      | 7                          | L        |
| 799         | Wilson    | Unnamed trib, Kansas Creek       | Kansas Creek Road    | 449598  | 5036566  | Pipe Arch    | 69            | 156            | Fair              | 1.6               | 0.4                 | Red            | 0.4                      | 7                          | L        |
| 299         | Wilson    | Unnamed trib, Elliot Creek       | Beaver Dam Road      | 469924  | 5048854  | Pipe Arch    | 56            | 126            | Fair              | 0.5               | 0.1                 | Green          | 0.5                      | 7                          | N/A      |
| 465         | Wilson    | Unnamed trib, Little N.F. Wilson | Kilchis Lookout Road | 450253  | 5045470  | Pipe Arch    | 74            | 162            | Good              | 2.4               | none                | Green          | 0.5                      | 7                          | N/A      |
| 900         | Wilson    | Hughey Creek                     | Fairview Road        | 440177  | 5034672  | Circular     | unk           | unk            | unk               | unk               | unk                 | unk            | 2.6                      | ?                          | ?        |
| 898         | Wilson    | Hughey Creek                     | Highway 6            | 440083  | 5034989  | Box          | unk           | unk            | unk               | unk               | unk                 | unk            | 2.8                      | ?                          | ?        |

Table 9. Summary of replacement prioritization scores and miles of affected upstream habitats for fish culverts in the Tillamook Bay Watershed.

| Basin                     | No. Culverts in Priority Rating Class |           |           |          |              | Total Miles of Affected Upstream Habitat <sup>1</sup> |
|---------------------------|---------------------------------------|-----------|-----------|----------|--------------|-------------------------------------------------------|
|                           | High                                  | Medium    | Low       | Unknown  | Not Barriers |                                                       |
| Kilchis River Basin       | 10                                    | 4         | 6         |          | 4            | 12.4                                                  |
| Miami River Basin         | 7                                     | 6         | 6         |          | 2            | 13.8                                                  |
| Tillamook Bay Tributaries | 13                                    | 13        | 9         |          |              | 13.8                                                  |
| Tillamook River Basin     | 5                                     | 3         | 2         |          | 5            | 35.6                                                  |
| Trask River Basin         | 17                                    | 11        | 30        |          | 6            | 35.8                                                  |
| Wilson River Basin        | 12                                    | 10        | 28        | 2        | 4            | 30.9                                                  |
| <b>Totals</b>             | <b>64</b>                             | <b>47</b> | <b>81</b> | <b>2</b> | <b>21</b>    | <b>144.6</b>                                          |

<sup>1</sup> These values reflect the actual amount of potentially suitable habitat affected by fish culverts surveyed for this study. On stream systems affected by multiple culverts, it includes only the total length of habitat upstream of the lower-most culvert in the system. For example, the Patterson Creek sub-basin (a Tillamook Bay tributary) includes nine fish culverts. The lower-most culvert in the system is located near the mouth of the creek and all other culverts in this system are along reaches included in the upstream habitat length reported for the lower-most culvert. The total value reported for the Tillamook Bay Tributaries in this table includes the 3.8 miles of potentially suitable habitat upstream of the lowest culvert. The habitat length values reported in the tables in Appendix 2 for the other eight culverts in this system are not included in the total reported in this table because they are already captured by including the lower culvert.

### 3.2. Road Ownership Patterns

Several governmental entities and private parties own/administer the roads on which the culverts identified in this report occur. Ownership patterns vary somewhat by basin (Table 10).

Table 10. Summary of road ownership for fish culverts in the Tillamook Bay Watershed.

| Road Owner     | Basin   |                    |                        |           |       |        |
|----------------|---------|--------------------|------------------------|-----------|-------|--------|
|                | Kilchis | Miami <sup>1</sup> | Till. Bay <sup>2</sup> | Tillamook | Trask | Wilson |
| <b>City</b>    | 0       | 0                  | 10                     | 0         | 4     | 0      |
| <b>County</b>  | 9       | 6                  | 10                     | 3         | 21    | 10     |
| <b>ODOT</b>    | 0       | 1                  | 5                      | 5         | 0     | 18     |
| <b>ODF</b>     | 11      | 9                  | 4                      | 3         | 25    | 26     |
| <b>Private</b> | 4       | 4                  | 8                      | 4         | 14    | 2      |

<sup>1</sup> Miami Basin culvert 138 is on a road segment with disputed ownership. It is not included in this table, because it is unclear who is responsible for this section of road.

<sup>2</sup> Culvert 453/454 in the Tillamook Bay Tributaries Basin includes city, private, and ODOT ownership. This mixed ownership is reflected in the table.

A majority of fish culverts included in this report (64 percent) are on Tillamook County and ODF roads. These entities own culverts in all six analysis units (i.e., all five river basins and the Tillamook Bay

tributaries) and, when combined, have majority ownership of fish culverts in the Kilchis (83 percent), Miami (72 percent), Trask (72 percent) and Wilson (64 percent) basins.

Culverts on private roads also occur in all six analysis units. Ownership of these culverts includes agricultural, industrial forest and residential landowners. The Trask Basin has the greatest number of private culverts surveyed for this report (14 culverts). These are located primarily in the lower portion of the basin and many are within the Mill Creek and Holden Creek sub-basins. Private road culverts account for over a quarter of the fish culverts we surveyed in the Tillamook Basin (27 percent). Land ownership within this basin is predominantly private and industrial forest and agricultural landowners account for a majority of the private holdings within the basin. It is important to note that we did not have permission to access a majority of the crossings on private roads within the Tillamook Basin. Many of these crossings were on lands owned by Stimson Lumber Company. This company has an active and ongoing culvert assessment and replacement program that is regulated by ODF under provisions set forth in the Oregon Forest Practices Act (OAR 629-625).

Oregon Department of Transportation (ODOT) culverts occur in four of the six analysis units. A high percentage of crossings we surveyed in the Tillamook (33 percent) and Wilson (32 percent) basins occur on ODOT roads. The greatest number of ODOT culverts is in the Wilson Basin (18 culverts). These primarily occur on Highway 6. Many of these Highway 6 culverts are fairly large box culverts that will likely be replaced with bridges or much larger box culverts, so costs for these replacement projects will be high. Many of these Highway 6 culverts also include trash racks that have dramatically and adversely affected the streams on which they occur (see culvert 697 as an example). This fact also will complicate replacement efforts for these crossings.

Several culverts in this report also occur on roads owned by one of several city governments. City-owned culverts occur in two of the six analysis units (Tillamook Bay Tributaries – City of Bay City and City of Garibaldi; Trask Basin – City of Tillamook). One third of the city-owned barrier culverts on streams that are direct tributaries to Tillamook Bay occur on a single stream, Patterson Creek. Salmonids continue to spawn on a portion of this stream despite the fact that eight barrier culverts occur along its length. Half of the barrier culverts on this stream (4 culverts), are on roads owned by the City of Bay City. The remaining barrier culverts on this stream are owned by ODOT, ODF, and Tillamook County.

### **3.3. Clustering**

Earlier we noted that we prioritized culverts in this report basin-by-basin, in part to facilitate use of the document. In Appendix 2 below, we provide detailed information for each surveyed fish culvert (tabular information, photographs and maps). We present this information basin-by-basin (alphabetically). In addition, we have further refined our presentation based on geography and proximity. Specifically, the tables and maps for each basin begin with the lowermost culverts in the basin and end with culverts in the upper basin. The tables are further grouped by proximity – culverts in close proximity to one another (e.g., near one another along the same stream or road) are grouped and identified by headings. Each of these culvert groups or “clusters” are depicted on a single map and the map titles correspond to the headings that accompany the tables. We incorporated these refinements not only to make the document easier to use, but to facilitate project development, planning and implementation.

The information provided in Appendix 2 includes a matrix and a map for each culvert. The tables include detailed location information, characteristics of both the culvert and the stream channel, and the data used for the prioritization analysis. Each matrix also includes one or more photographs of the culvert and/or adjacent stream channel. Some also include additional notable information to further describe the culvert or adjacent stream conditions or clarify peculiarities in the tabular information. Appendix 2 also includes a table summarizing clusters for each basin.

The legend below is applicable for all maps in Appendix 2. Each map depicts crossings (symbology based on prioritization rating or other characteristics), roads (symbology based on ownership), streams (symbology based on ODF fish presence information), and land ownership (symbology based on ownership).

| <b>Legend</b>                |                                 |                    |                                |  |  |
|------------------------------|---------------------------------|--------------------|--------------------------------|--|--|
| <b>Road-Stream Crossings</b> | <b>Roads</b>                    | <b>Streams</b>     | <b>Land Ownership</b>          |  |  |
| ▲ RED                        | — Private                       | — Fish-Verified    | ■ US Bureau of Land Management |  |  |
| ▲ GRAY                       | — City                          | — Fish-Assumed     | ■ US Forest Service            |  |  |
| ▲ GREEN                      | — County                        | — Fish-Modeled     | ■ Local Government             |  |  |
| ✗ No Access                  | — ODOT                          | — Nonfish-Verified | ■ State of Oregon              |  |  |
| ★ Hatchery Diversion         | — Oregon Department of Forestry | — Nonfish-Assumed  | ■ Private                      |  |  |
| ☒ Bridge                     |                                 | — Nonfish-Modeled  |                                |  |  |
| ☒ NFC                        |                                 |                    |                                |  |  |
| ◊ Does Not Exist             |                                 |                    |                                |  |  |

## 4.0. Literature Cited

Bio-Surveys, LLC. 2005. Tillamook Bay Rapid Bio-Assessment. Unpublished report prepared for Tillamook Estuaries Partnership, Garibaldi, Oregon. 78 pp. plus electronic data sets. Available electronically at [http://www.tbnep.org/images/stories/documents/resource\\_center\\_docs/salmonids/Tillamook%20RBA%20Final%202005.pdf](http://www.tbnep.org/images/stories/documents/resource_center_docs/salmonids/Tillamook%20RBA%20Final%202005.pdf)

Bio-Surveys, LLC. 2006. Tillamook Bay Rapid Bio-Assessment. Unpublished report prepared for Tillamook Estuaries Partnership, Garibaldi, Oregon. 84 pp. plus electronic data sets. Available electronically at [http://www.tbnep.org/images/stories/documents/resource\\_center\\_docs/salmonids/Tillamook%20RBA%20Final%202006.pdf](http://www.tbnep.org/images/stories/documents/resource_center_docs/salmonids/Tillamook%20RBA%20Final%202006.pdf)

Bio-Surveys, LLC. 2007. Tillamook Bay Rapid Bio-Assessment. Unpublished report prepared for Tillamook Estuaries Partnership, Garibaldi, Oregon. 90 pp. plus electronic data sets. Available electronically at [http://www.tbnep.org/images/stories/documents/resource\\_center\\_docs/salmonids/Tillamook%20RBA%20Final%202007.pdf](http://www.tbnep.org/images/stories/documents/resource_center_docs/salmonids/Tillamook%20RBA%20Final%202007.pdf)

Burnett, K., G. Reeves, D. Miller, S. Clarke, K. Christiansen, and K. Vance-Borland. 2003. A first step toward broad-scale identification of freshwater protected areas for Pacific salmon and trout in Oregon, USA. Pp. 144-154 in Beumer, J.P., A. Grant, and D.C. Smith, eds. Aquatic protected areas: what works best and how do we know? Proceedings of the World Congress on aquatic protected areas, Cairns, Australia, August 2002. Australian Society for Fish Biology. North Beach, WA, Australia.

Burnett, K. M., Reeves, G. H., Miller, D. J., Clarke, S., Vance-Borland, K., & Christiansen, K. 2007. Distribution of salmon-habitat potential relative to landscape characteristics and implications for conservation. *Ecological Applications*, 17(1), 66-80. Available electronically at [http://www.fsl.orst.edu/clams/download/pubs/2007EA\\_burnett\\_reeves.pdf](http://www.fsl.orst.edu/clams/download/pubs/2007EA_burnett_reeves.pdf)

Clarkin, K., A. Connor, M.J. Furniss, B. Gubernick, M. Love, K. Moynan, and S. Wilson-Musser. 2005. National inventory and assessment procedure for identifying barriers to aquatic organism passage at road-stream crossings. U.S. Department of Agriculture Forest Service, National Technology and Development Program, San Dimas, California. 29 pp. + appendices.

Hoffman, R. 2006. Nestucca/Neskowin Watersheds: Culvert prioritization and action plan for fish passage. US Bureau of Land Management, Tillamook Resource Area publication. 98 pp. Available electronically at [http://www.tbnep.org/images/stories/documents/resource\\_center\\_docs/fish\\_passage/Nestucca-Culvert-Prioritization.pdf](http://www.tbnep.org/images/stories/documents/resource_center_docs/fish_passage/Nestucca-Culvert-Prioritization.pdf)

Hunt, J.H., S.M. Zerges, B.C. Roberts, and B. Bergendahl. 2010. Culvert assessment and decision making procedures manual for federal lands highway. Publication No. FHWA-CFL/TD-10-005. Federal Highway Administration, Central Federal Lands Highway Division, Lakewood, Colorado. 80 pp. + appendices.

Limburg K.E., and J.R. Waldman. 2009. Dramatic declines in North Atlantic diadromous fishes. *BioScience* 59: 955-965.

Meehan, W.R. *ed.* 1991. Influences of forest and rangeland management on salmonid fishes and their habitats. American Fisheries Society, Special Publication 19. American Fisheries Society, Bethesda, Maryland. 622 pp.

Oregon Department of Forestry. 2009. Physical Habitat Survey Training Manual. Unpublished training manual prepared by ODF, State Forests Division, Salem, Oregon. June 2009. 18 pp. + Appendices.

---

## **Appendix 1**

Tillamook Bay Culvert Prioritization Field Data Sheet

---

# Crossing Assessment Form

Date: \_\_\_\_\_

Crossing ID: \_\_\_\_\_

## SITE INFORMATION

NFC: \_\_\_\_\_

Watershed: \_\_\_\_\_

Stream: \_\_\_\_\_

Road: \_\_\_\_\_

Ownership: \_\_\_\_\_

Mile Post: \_\_\_\_\_

UTM: Zone: 10 East \_\_\_\_\_ North \_\_\_\_\_ NAD 83

7.5-minute Quad: \_\_\_\_\_

Legal Description: T. \_\_\_\_\_, R. \_\_\_\_\_, Sec. \_\_\_\_\_, \_\_\_\_\_ 1/4 of \_\_\_\_\_ 1/4 Surveyors: \_\_\_\_\_

## CULVERT STRUCTURE

Multiple Structures at Site: yes no

| Barrel Shape                              | Corrugations                             | Culvert Condition                                              | Longitudinal Profile                                           | Dist. (ft) | BS (+) | HI | FS (-) | Elev. (ft) |
|-------------------------------------------|------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|------------|--------|----|--------|------------|
| <input type="checkbox"/> Box              | <input type="checkbox"/> 2 2/3x1 1/2 in. | (Check all that apply)                                         | Temp. Bench Mark                                               | N/A        |        |    |        | 100.00     |
| <input type="checkbox"/> Circular         | <input type="checkbox"/> 3x1 in.         | <input type="checkbox"/> Bent inlet                            | Inlet Gradient Control Pt (P1)                                 |            |        |    |        |            |
| <input type="checkbox"/> Open Bottom Arch | <input type="checkbox"/> 5x1 in.         | <input type="checkbox"/> Debris plugging inlet                 | Inlet Invert (P2)                                              |            |        |    |        |            |
| <input type="checkbox"/> Pipe-Arch        | <input type="checkbox"/> SSP 6x2 in.     | <input type="checkbox"/> Bottom worn thru                      | Road Surface (P3)                                              |            |        |    |        |            |
|                                           | <input type="checkbox"/> Smooth          | <input type="checkbox"/> Water under culvert                   | Outlet Invert (P4)                                             |            |        |    |        |            |
|                                           |                                          | <input type="checkbox"/> Fill eroding                          | Outlet Pool Bottom (P5)                                        |            |        |    |        |            |
| <b>Dimensions</b>                         |                                          |                                                                |                                                                |            |        |    |        |            |
| _____ (ft) Horizontal                     | <b>Culvert Material</b>                  | <input type="checkbox"/> Other:                                | Water Surface at P5 (add water depth to P5 elev.) →            |            |        |    |        |            |
| _____ (ft) Vertical                       |                                          | <input type="checkbox"/> None                                  | Tailwater Control Point (P6)                                   |            |        |    |        |            |
|                                           | <input type="checkbox"/> CMP             | <input type="checkbox"/> Steel <input type="checkbox"/> spiral |                                                                |            |        |    |        |            |
|                                           |                                          | <input type="checkbox"/> Alum <input type="checkbox"/> annular |                                                                |            |        |    |        |            |
|                                           | <input type="checkbox"/> SSP (Steel)     | <b>Overall Condition</b>                                       | <b>Culvert Length (P2 Dist – P4 Dist)</b>                      |            |        |    |        |            |
| <b>Inlet Blockage</b>                     | <input type="checkbox"/> Plastic         | <input type="checkbox"/> Good                                  | <b>Culvert Slope*</b>                                          |            |        |    |        | %          |
| <input type="checkbox"/> Not Blocked      | <input type="checkbox"/> Concrete        | <input type="checkbox"/> Fair                                  | * Calculate: (P2 – P4 elev / Culvert Length) x100 /            |            |        |    |        |            |
| <input type="checkbox"/> <10% Blockage    | <input type="checkbox"/> Wood            | <input type="checkbox"/> Poor                                  | <b>Inlet Rustline Height</b>                                   |            |        |    |        | ft         |
| <input type="checkbox"/> >10% Blockage    | <input type="checkbox"/> Other           | <input type="checkbox"/> Critical                              | <b>Road Surface:</b>                                           |            |        |    |        |            |
|                                           |                                          | (lowest of all rating assignments for feature-see back)        | <b>Road Fill Index:</b><br>P3 - Elev. top of inlet (often TBM) |            |        |    |        |            |

**Inlet Type (circle):** projecting      mitered      wingwall 10-30°      wingwall 30-70°      headwall      apron      trashrack      Other

**Comments** (include outlet type and any other notable conditions):

## Substrate Particle Sizes (rank 1-3 in order of contribution to substrate)

|                       | Bedrock | Boulder | Cobble | Gravel | Sand | Silt/Clay | Organics | Aquatic macrophytes |
|-----------------------|---------|---------|--------|--------|------|-----------|----------|---------------------|
| <b>In Culvert</b>     |         |         |        |        |      |           |          |                     |
| <b>Stream Channel</b> |         |         |        |        |      |           |          |                     |

**Natural Substrate in Culvert** (i.e., rock, wood, etc.)  None       Continuous       Discontinuous (approx. % \_\_\_\_\_)

## CHANNEL DESCRIPTION

**Inlet Gradient:**  
Calculate ((P1-P2 elev) / (P1-P2 dist)) \* 100       $((\underline{\hspace{1cm}} - \underline{\hspace{1cm}}) / (\underline{\hspace{1cm}} - \underline{\hspace{1cm}})) * 100 =$  %

**Channel Gradient:**  
Beyond culvert influence      Upstream       $((\text{Upper Elev. } \underline{\hspace{1cm}} - \text{Lower Elev. } \underline{\hspace{1cm}}) / \text{Dist. } \underline{\hspace{1cm}}) * 100 =$  %  
Downstream       $((\text{Upper Elev. } \underline{\hspace{1cm}} - \text{Lower Elev. } \underline{\hspace{1cm}}) / \text{Dist. } \underline{\hspace{1cm}}) * 100 =$  %

**Bankfull Width:**  
Beyond culvert influence (min. of 3 measurements)      Upstream widths      1)       , 2)       , 3)       , 4)       , 5)             AVG. =  
Downstream widths      1)       , 2)       , 3)       , 4)       , 5)             AVG. =

**Inlet Width to Bankfull Width:** \_\_\_\_\_ ft (Inlet Width) / \_\_\_\_\_ ft (Avg upstream BFW) → \_\_\_\_\_

## PHOTOGRAPHS (Take whiteboard photo as first/last photos – record number of photos for each photo-point and order taken—depict points on site drawing)

**Inlet Photo Numbers:** \_\_\_\_\_      **Outlet Photo Numbers:** \_\_\_\_\_

**Upstream Photo Numbers:** \_\_\_\_\_      **Downstream Photo Numbers:** \_\_\_\_\_

**Other Photo Numbers:** \_\_\_\_\_

**DRAWINGS** Overall view from **Upstream** of culvert to **Downstream** of culvert

Include: P1-P6, Temporary Bench Mark (TBM), Instrument Location (  ), North arrow, Stream flow direction, wingwalls/headwall, apron, debris piles, photo points (  ), etc.

**ADDITIONAL COMMENTS**

| <b>Condition Assessment</b> (Circle one for each appropriate category based on pipe material - <i>categories in FHWA Culvert Assessment Guide</i> ) |      |      |      |                      |                            |      |      |      |          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|------|------|------|----------------------|----------------------------|------|------|------|----------|
| <b>CMP</b>                                                                                                                                          |      |      |      | <b>Concrete</b>      |                            |      |      |      |          |
| Corrosion (above Invert):                                                                                                                           | Good | Fair | Poor | Critical             | Cracking/Spalling:         | Good | Fair | Poor | Critical |
| Cross-section Deformation:                                                                                                                          | Good | Fair | Poor | Critical             | Cross-section Deformation: | Good | Fair | Poor | Critical |
| Invert Deterioration:                                                                                                                               | Good | Fair | Poor | Critical             | Invert Deterioration:      | Good | Fair | Poor | Critical |
| Joints and seams:                                                                                                                                   | Good | Fair | Poor | Critical             | Joints:                    | Good | Fair | Poor | Critical |
| <b>Plastic Pipe</b>                                                                                                                                 |      |      |      | <b>Appurtenances</b> |                            |      |      |      |          |
| Wall Condition:                                                                                                                                     | Good | Fair | Poor | Critical             | Headwall/Wingwall:         | Good | Fair | Poor | Critical |
| Cross-section Deformation:                                                                                                                          | Good | Fair | Poor | Critical             | Apron:                     | Good | Fair | Poor | Critical |
| Invert Deterioration:                                                                                                                               | Good | Fair | Poor | Critical             | Pipe End:                  | Good | Fair | Poor | Critical |
| Joints:                                                                                                                                             | Good | Fair | Poor | Critical             | Scour Protection:          | Good | Fair | Poor | Critical |

**HABITAT INFORMATION**

|                                        | <b>Upstream</b> | <b>Downstream</b> |
|----------------------------------------|-----------------|-------------------|
| <b>Number of Culverts (list)</b>       |                 |                   |
| <b>Number of Known Barriers (list)</b> |                 |                   |
| <b>Distance to Known Barriers</b>      |                 |                   |
| <b>Length of Upstream Habitat</b>      |                 |                   |

**FISH PASSAGE EVALUATION**

|                                         |              |             |            |
|-----------------------------------------|--------------|-------------|------------|
| <b>COARSE SCREEN FILTER EVALUATION:</b> | <b>GREEN</b> | <b>GREY</b> | <b>RED</b> |
|-----------------------------------------|--------------|-------------|------------|

---

## Appendix 2

Culvert tables and cluster maps for each basin in the Tillamook Bay Watershed

| <b>Legend</b>                |                                     |                    |                                |
|------------------------------|-------------------------------------|--------------------|--------------------------------|
| <b>Road-Stream Crossings</b> | <b>Roads</b>                        | <b>Streams</b>     | <b>Land Ownership</b>          |
| ▲ RED                        | — ··· Private                       | — Fish-Verified    | ■ US Bureau of Land Management |
| ▲ GRAY                       | — ··· City                          | — Fish-Assumed     | ■ US Forest Service            |
| ▲ GREEN                      | — ··· County                        | — Fish-Modeled     | ■ Local Government             |
| ✗ No Access                  | — ··· ODOT                          | — Nonfish-Verified | ■ State of Oregon              |
| ★ Hatchery Diversion         | — ··· Oregon Department of Forestry | — Nonfish-Assumed  | □ Private                      |
| ■ Bridge                     |                                     | — Nonfish-Modeled  |                                |
| ■ NFC                        |                                     |                    |                                |
| ◊ Does Not Exist             |                                     |                    |                                |

---